

Einschub-Konstantmotor A2FE

RD 91008/06.2012 1/24 Ersetzt 09.07

Datenblatt

Baureihe 6

Nenngröße Nenndruck/Höchstdruck

28 bis 180 400/450 bar 250 bis 355 350/400 bar Offener und geschlossener Kreislauf

Inhalt

Typschlüssel für Standardprogramm 2 Technische Daten 4 Abmessungen Nenngröße 28 bis 180 10 Abmessungen Nenngröße 250 12 Abmessungen Nenngröße 355 13 Spül- und Speisedruckventil 14 Druckbegrenzungsventil 16 Bremsventil BVD und BVE 18 Drehzahlsensoren 22 Einbauhinweise 23 Allgemeine Hinweise 24

Merkmale

- Einschub-Konstantmotor mit Axial-Kegelkolben-Triebwerk in Schrägachsenbauart für hydrostatische Antriebe im offenen und geschlossenen Kreislauf
- Weitgehende Integration in mechanische Getriebe durch zurückgezogenen, in die Gehäusemitte gelegten Anbauflansch (äußerst raumsparende Bauweise)
- Die Abtriebsdrehzahl ist abhängig vom Förderstrom der Pumpe und vom Schluckvolumen des Motors
- Das Abtriebsdrehmoment wächst mit der Druckdifferenz zwischen Hoch- und Niederdruckseite.
- Kleine Abmessungen
- Hoher Gesamtwirkungsgrad
- Komplette Einheit, fertig montiert und geprüft
- Montagefreundlich, einfacher Einschub in das mechanische Getriebe
- Beim Einbau keine Abstimmvorschriften zu beachten

Typschlüssel für Standardprogramm

	A2F		Е		/	6		W	-	٧						
01	02	03	04	05		06	07	08		09	10	11	12	13	14	15

Druckflüssigkeit

	Mineralöl und HFD. HFD bei NG	250 und 355 nur in Verbindung mit Long-Life Lagerung "L" (ohne Zeichen)	
01	HFB-, HFC-Druckflüssigkeit	NG28 bis 180 (ohne Zeichen)	
		NG250 bis 355 (nur in Verbindung mit Long-Life Lagerung "L")	E-

Axialkolbeneinheit

02 Schrägachsenbauart, konstant

	Triebwellenlager	28 bis 180	250 bis 355	
03	Standardlagerung (ohne Zeichen)	•	•	
03	Long-Life Lagerung	_	•	L

Betriebsart

04 Motor, Einschubausführung

Nenngrößen (NG)

05	Geometrisches Schlu	ckvolum	nen, siel	he Wer	tetabelle	e Seite	7								
		28	32	45	56	63	80	90	107	125	160	180	250	355	Ī

Baureihe

06

Index

07	NG28 bis 180	1	
07	NG250 und 355	0	l

Drehrichtung

08 Bei Blick auf Triebwelle, wechselnd

Dichtungen

09 FKM (Fluor-Kautschuk)	V

	Triebwellen	28	32	45	56	63	80	90	107	125	160	180	250	355	
10	Zahnwelle DIN 5480	•	•	-	•	•	•	•	•	•	•	•	-	-	Α
10		•	-	•	•	-	•	-	•	-	•	-	•	•	Z

	Anbauflansche		28 bis 180	250 und 355		
44	ISO 3019-2	2-Loch	•	_	L	
11		4-Loch	_	•	М	

Typschlüssel für Standardprogramm

	A2F		Е		/	6		W	ı	٧						
01	02	03	04	05		06	07	08		09	10	11	12	13	14	15

	Anschlussplatten¹)			28	32	45	56	63	80	90	107	125	160	180	250	355	
		01	0	_	_	_	_	_	-	_	-	_	-	_	•	0	010
	A und B hinten		7	_	-	_	-	-	-	-	-	-	-	-	-	0	017
	SAE-Flanschanschlüsse	02	0	_	-	_	-	-	_	-	_	-	-	-	•	0	020
	A und B seitlich, gegenüberliegend		7	_	_	•	A	A	A	A	•	•	•	•	•	-	027
			9	_	_	_	•	•	•	•	_	_	_	_	_	-	029
	SAE-Flanschanschlüsse	10	0	•	•	•	•	•	•	•	•	•	•	•	-	•	100
	A und B unten (gleiche Seite)		7	_	-	_	-	-	-	_	-	-	-	-	-	•	107
	Anschlussplatte BVD mit 1-stufigen Druckbegren-	17	1	-	-	_	-	-	-	_	•	•	-	-	-	-	171 178
	zungsventilen zum Anbau	18	8	•	•	•	•	•	•	•	•	•	•	•	-	-	181
12	eines Bremsventils ²⁾ BVE	18		_	-	_	_	-	_	_	•	•	•	•	_4)	_	188
	Anschlussplatte mit	19	1	•	•	•	•	•	•	•	•	•	•	•	_	-	191
	Druckbegrenzungsventilen		2	•	•	•	•	•	•	•	•	•	•	•	_	-	192
	Ventile (siehe Seite 14 bis 21)			_						•							
	Ohne Ventil																
	Druckbegrenzungsventile (ohne Druckzuschaltstufe)																
	Druckbegrenzungsventile (mit Druckzuschaltstufe)																
	Spül- und Speisedruckventil angebau	ıt						-	7								

Drehzahlsensoren (siehe Seite 22)

Mit Bremsventil BVD/BVE angebaut²⁾³⁾ Spül- und Speisedruckventil integriert

28 bis 45 56 bis 180 250 355⁴⁾

	Ohne Drehzahlsensor (ohne Zeichen)	•	•	•	•	
	Für Drehzahlsensor HDD vorbereitet	_	A	•	_	F
13	Drehzahlsensor HDD angebaut ⁵⁾	_	A	•	_	Н
	Für Drehzahlsensor DSA vorbereitet	0	0	0	_	U
	Drehzahlsensor DSA angebaut ⁵⁾	0	0	0	_	V

9

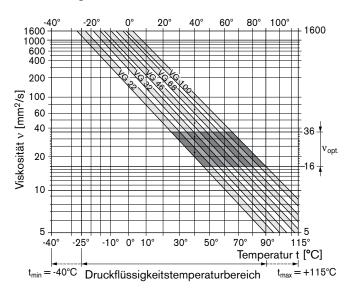
Spezialausführung (nur NG28 bis 180)

	<u></u>		_
11	Standardausführung (ohne Zeichen)		
14	Spezialausführung für Drehwerksantriebe (Standard bei Anschlussplatte 19)	J	Ì

Standard-/Sonderausführung

		Standardausführung (ohne Zeichen)	
	15	Standardausführung mit Montagevarianten, z. B. T-Anschlüsse entgegen Standard offen oder geschlossen	-Y
		Sonderausführung	- S

● = Lieferbar	O = Auf Anfrage	- = Nicht lieferbar	▲ = Nicht für Neuprojekte	= Vorzugsprogramm
	9 / tan / tim ago			vo.2a.gop. vg.a


- 1) Befestigungsgewinde bzw. Gewindeanschlüsse metrisch
- 2) Beachten Sie die Einschränkungen auf Seite19.
- 3) Typschlüssel vom Bremsventil gemäß Datenblatt (BVD RD 95522, BVE RD 95525) separat angeben.
- 4) Bitte Rücksprache
- 5) Typschlüssel vom Sensor gemäß Datenblatt (DSA RD 95133, HDD RD 95135) separat angeben und die Anforderungen an die Elektronik beachten

Druckflüssigkeit

Ausführliche Informationen zur Auswahl der Druckflüssigkeit und den Einsatzbedingungen bitten wir, vor der Projektierung unseren Datenblättern RD 90220 (Mineralöl), RD 90221 (Umweltverträgliche Druckflüssigkeiten), RD 90222 (HFD-Druckflüssigkeiten) und RD 90223 (HFA-, HFB-, HFC-Druckflüssigkeiten) zu entnehmen.

Der Einschubmotor A2FE ist für den Betrieb mit HFA-Druckflüssigkeit nicht geeignet. Bei Betrieb mit HFB-, HFC- und HFD- oder umweltverträgliche Druckflüssigkeiten sind Einschränkungen der technischen Daten bzw. andere Dichtungen erforderlich.

Auswahldiagramm

Erläuterung zur Auswahl der Druckflüssigkeit

Für die richtige Wahl der Druckflüssigkeit wird die Kenntnis der Betriebstemperatur in Abhängigkeit von der Umgebungstemperatur vorausgesetzt: im geschlossenen Kreislauf die Kreislauftemperatur, im offenen Kreislauf die Tanktemperatur.

Die Auswahl der Druckflüssigkeit soll so erfolgen, dass im Betriebstemperaturbereich die Betriebsviskosität im optimalen Bereich (v_{opt}) liegt, siehe Auswahldiagramm gerastertes Feld. Wir empfehlen, die jeweils höhere Viskositätsklasse zu wählen.

Beispiel: Bei einer Umgebungstemperatur von X °C stellt sich eine Betriebstemperatur von 60 °C ein. Im optimalen Viskositätsbereich (vopt., gerastertes Feld) entspricht dies den Viskositätsklassen VG 46 und VG 68; zu wählen: VG 68.

Beachten

Die Leckflüssigkeitstemperatur, beeinflusst von Druck und Drehzahl, kann über der Kreislauftemperatur bzw. Tanktemperatur liegen. An keiner Stelle der Komponente darf die Temperatur höher als 115 °C sein. Für die Viskositätsbestimmung im Lager ist die unten angegebene Temperaturdifferenz zu berücksichtigen.

Sind obige Bedingungen bei extremen Betriebsparametern nicht einzuhalten, empfehlen wir den Einsatz eines Spül- und Speisedruckventils (siehe Seite 14).

Viskosität und Temperatur der Druckflüssigkeit

		_	
	Viskosität [mm²/s]	Temperatur	Bemerkung
Transport und Lagerung		$T_{min} \ge -50 ^{\circ}\text{C}$	werkseitige Konservierung:
bei Umgebungstemperati	ur	$T_{opt} = +5 ^{\circ}\text{C} \text{ bis } +20 ^{\circ}\text{C}$	bis 12 Monate Standard, bis 24 Monate Langzeit
(Kalt) Starten ¹⁾	$v_{\text{max}} = 1600$	T _{St} ≥ -40 °C	$t \le 3$ min, ohne Last (p ≤ 50 bar),
			n ≤ 1000 min ⁻¹ (bei NG28 bis 180)
			$n \le 0.25 \cdot n_{nom}$ (bei NG250 und 355)
zulässige Temperaturd	ifferenz	$\Delta T \le 25 \text{ K}$	zwischen Axialkolbeneinheit und Druckflüssigkeit
Warmlaufphase	ν < 1600 bis 400	T = -40 °C bis -25 °C	bei $p \le 0.7$ • p_{nom} , $n \le 0.5$ • n_{nom} und $t \le 15$ min
Betriebsphase			
Temperaturdifferenz		$\Delta T = ca. 12 K$	zwischen Druckflüssigkeit im Lager und am Anschluss T.
Maximale Temperatur		115 °C	im Lager
		103 °C	gemessen am Anschluss T
Dauerbetrieb	v = 400 bis 10	T = -25 °C bis +90 °C	gemessen am Anschluss T,
	v_{opt} = 36 bis 16		keine Einschränkung innerhalb der zulässigen Daten
Kurzzeitbetrieb ²⁾	$\nu_{min} \geq 7$	$T_{max} = +103 ^{\circ}C$	gemessen am Anschluss T, t < 3 min, p < 0.3 • p_{nom}
Wellendichtring FKM ¹⁾		T ≤ +115 °C	siehe Seite 5
·		· · · · · · · · · · · · · · · · · · ·	

¹⁾ Bei Temperaturen unter -25 °C ist ein NBR-Wellendichtring erforderlich (zulässiger Temperaturbereich: -40 °C bis +90 °C).

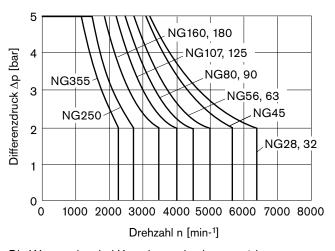
²⁾ Nenngröße 250 und 355, bitte Rücksprache.

Filterung der Druckflüssigkeit

Mit feinerer Filterung verbessert sich die Reinheitsklasse der Druckflüssigkeit, wodurch die Lebensdauer der Axialkolbeneinheit zunimmt.

Zur Gewährleistung der Funktionssicherheit der Axialkolbeneinheit ist für die Druckflüssigkeit eine gravimetrische Auswertung zur Bestimmung der Feststoffverschmutzung und Bestimmung der Reinheitsklasse nach ISO 4406 erforderlich. Mindestens einzuhalten ist eine Reinheitsklasse von 20/18/15.

Bei sehr hohen Temperaturen der Druckflüssigkeit (90 °C bis maximal 115 °C) ist mindestens die Reinheitsklasse 19/17/14 nach ISO 4406 erforderlich.


Können obige Klassen nicht eingehalten werden, bitte Rücksprache.

Wellendichtring

Zulässige Druckbelastung

Die Standzeit des Wellendichtrings wird beeinflusst von der Drehzahl der Axialkolbeneinheit und dem Leckflüssigkeitsdruck (Gehäusedruck). Dauerhaft darf der gemittelte Differenzdruck von 2 bar zwischen Gehäuse- und Umgebungsdruck bei Betriebstemperatur nicht überschritten werden. Höherer Differenzdruck bei reduzierter Drehzahl siehe Diagramm. Dabei sind kurzzeitige (t < 0.1 s) Druckspitzen bis 10 bar erlaubt. Je häufiger die Druckspitzen auftreten, desto kürzer wird die Standzeit des Wellendichtringes.

Der Druck im Gehäuse muss gleich oder größer sein als der Umgebungsdruck.

Die Werte gelten bei Umgebungsdruck $p_{abs} = 1$ bar.

Temperaturbereich

Der FKM-Wellendichtring ist für Leckflüssigkeitstemperaturen von -25 °C bis +115 °C zulässig.

Hinweis

Für Einsatzfälle unter -25 °C ist ein NBR-Wellendichtring erforderlich (zulässiger Temperaturbereich: -40 °C bis +90 °C). NBR-Wellendichtring bei Bestellung im Klartext angeben. Bitte Rücksprache.

Durchflussrichtung

Drehrichtung, bei Blick auf Triebwelle						
rechts links						
A nach B	B nach A					

Drehzahlbereich

Minimaldrehzahl n_{min} nicht begrenzt. Bei geforderter Gleichförmigkeit der Bewegung Drehzahl n_{min} nicht unter 50 min⁻¹. Maximaldrehzahl siehe Wertetabelle Seite 7.

Long-Life-Lagerung

Nenngrößen 250 und 355

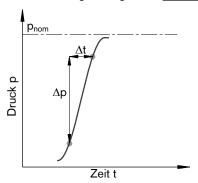
Für hohe Lebensdauer und Einsatz mit HF-Druckflüssigkeiten. Gleiche äußere Abmessungen wie Motor mit Standardlagerung. Ein nachträglicher Umbau auf Long-Life-Lagerung ist möglich.

Betriebsdruckbereich

(bei Einsatz von Mineralöl)

Druck am Anschluss für Arbeitsleitung A oder B

Nenngröße 28 bis 180

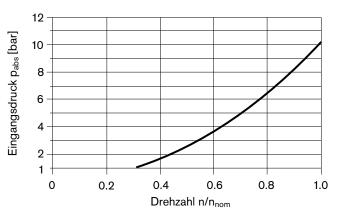

Nenndruck p _{nom}	400 bar absolut
Höchstdruck p _{max}	000 -
Summendruck (Druck A + Druck B) p _{Su}	700 bar
Nenngröße 250 und 355	

Nenndruck p _{nom}	350 bar absolut
Höchstdruck p _{max}	400 bar absolut
Einzelwirkdauer	10 s
Gesamtwirkdauer	300 h
Summendruck (Druck A + Druck B) p _{Su}	700 bar

Mindestdruck (Hochdruckseite) 25 bar absolut

Druckänderungsgeschwindigkeit R_{A max}

mit integriertem Druckbegrenzungsventil _____ ohne Druckbegrenzungsventil ______16000 bar/s



Hinweis

Werte für andere Druckflüssigkeiten bitte Rücksprache.

Mindestdruck - Pumpenbetrieb (Eingang)

Um eine Beschädigung des Axialkolbenmotors im Pumpenbetrieb (Wechsel der Hochdruckseite bei gleichbleibender Drehrichtung, z. B. bei Bremsvorgängen) zu verhindern, muss am Arbeitsanschluss (Eingang) ein Mindestdruck gewährleistet sein. Der Mindestdruck ist abhängig von Drehzahl der Axialkolbeneinheit (siehe Kennlinie unten).

Dieses Diagramm gilt nur für den optimalen Viskositätsbereich von $v_{opt} = 16$ bis 36 mm²/s.

Können obige Bedingungen nicht gewährleistet werden, bitte Rücksprache.

Definition

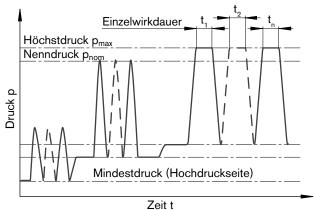
Nenndruck p_{nom}

Der Nenndruck entspricht dem maximalen Auslegungsdruck.

Höchstdruck p_{max}

Der Höchstdruck entspricht dem maximalen Betriebsdruck innerhalb der Einzelwirkdauer. Die Summe der Einzelwirkdauern darf die Gesamtwirkdauer nicht überschreiten.

Mindestdruck (Hochdruckseite)


Mindestdruck auf der Hochdruckseite (A oder B) der erforderlich ist, um eine Beschädigung der Axialkolbeneinheit zu verhindern.

Summendruck psu

Der Summendruck ist die Summe der Drücke an den Anschlüssen für die Arbeitsleitungen (A und B).

Druckänderungsgeschwindigkeit RA

Maximal zulässige Druckaufbau- und Druckabbaugeschwindigkeit bei einer Druckänderung über den gesamten Druckbereich.

Gesamtwirkdauer = $t_1 + t_2 + ... + t_n$

Wertetabelle (theoretische Werte, ohne Wirkungsgrade und Toleranzen: Werte gerundet)

Nenngröße		NG		28	32	45	56	63	80	
Schluckvolumen		V_{g}	cm ³	28.1	32	45.6	56.1	63	80.4	
geometrisch, pro										
Drehzahl, maxim	nal ¹⁾	n _{nom}	min ⁻¹	6300	6300	5600	5000	5000	4500	
		n _{max} ²⁾	min ⁻¹	6900	6900	6200	5500	5500	5000	
Schluckstrom ³⁾										
bei n _{nom} und	V_g	q_V	L/min	177	202	255	281	315	362	
Drehmoment ⁴⁾										
bei V_g und	$\Delta p = 350 \text{ bar}$	T	Nm	157	178	254	313	351	448	
	$\Delta p = 400 \text{ bar}$	Т	Nm	179	204	290	357	401	512	
Verdrehsteifigkeit	i .	С	kNm/ rad	2.93	3.12	4.18	5.94	6.25	8.73	
Massenträgheits	smoment Triebwerk	J_{TW}	kgm²	0.0012	0.0012	0.0024	0.0042	0.0042	0.0072	
Winkelbeschleur	nigung maximal	α	rad/s ²	6500	6500	14600	7500	7500	6000	
Füllmenge		٧	L	0.20	0.20	0.33	0.45	0.45	0.55	
Masse (ca.)		m	kg	10.5	10.5	15	18	19	23	
Nenngröße		NG		90	107	125	160	180	250	355
Schluckvolumen geometrisch, pro		V_{g}	cm ³	90	106.7	125	160.4	180	250	355
Drehzahl maxima	al ¹⁾	n _{nom}	min ⁻¹	4500	4000	4000	3600	3600	2700	2240
		n _{max} ²⁾	min ⁻¹	5000	4400	4400	4000	4000	_	_
Schluckstrom ³⁾										
لمستناها										
bei n _{nom} und	V_{q}	q_V	L/min	405	427	500	577	648	675	795
bei n _{nom} und Drehmoment ⁴⁾	V _g	qv	L/min	405	427	500	577	648	675	795
Drehmoment ⁴⁾	V_g $\Delta p = 350 \text{ bar}$	q _V	L/min Nm	405 501	427 594	500 696	577 893	1003	675 1393	795 1978
Drehmoment ⁴⁾		· ·								
Drehmoment ⁴⁾	$\Delta p = 350 \text{ bar}$ $\Delta p = 400 \text{ bar}$	T	Nm	501	594	696	893	1003	1393	1978
Drehmoment ⁴⁾ bei V _g und Verdrehsteifigkeit	$\Delta p = 350 \text{ bar}$ $\Delta p = 400 \text{ bar}$	T T	Nm Nm kNm/	501 573	594 679	696 796	893 1021	1003 1146	1393	1978
Drehmoment ⁴⁾ bei V _g und Verdrehsteifigkeit	$\Delta p = 350 \text{ bar}$ $\Delta p = 400 \text{ bar}$ t smoment Triebwerk	T T c	Nm Nm kNm/ rad	501 573 9.14	594 679 11.2	696 796 11.9	893 1021 17.4	1003 1146 18.2	1393 - 73.1	1978 - 96.1
Drehmoment ⁴⁾ bei V _g und Verdrehsteifigkeit Massenträgheits	$\Delta p = 350 \text{ bar}$ $\Delta p = 400 \text{ bar}$ t smoment Triebwerk	T T c	Nm Nm kNm/ rad kgm²	501 573 9.14 0.0072	594 679 11.2 0.0116	696 796 11.9 0.0116	893 1021 17.4 0.0220	1003 1146 18.2 0.0220	1393 - 73.1 0.061	1978 - 96.1 0.102

- 1) Die Werte gelten:
 - für den optimalen Viskositätsbereich von $v_{opt} = 36 \text{ bis } 16 \text{ mm}^2\text{/s}$
 - bei Druckflüssigkeit auf Basis von Mineralölen
- 2) Intermittierende Maximaldrehzahl: Überdrehzahl bei Entlastungs- und Überholvorgängen, t < 5 s und $\Delta p < 150$ bar
- 3) Schluckstromeinschränkung mit Bremsventil, siehe Seite 19
- 4) Drehmoment ohne Radialkraft, mit Radialkraft siehe Seite 8

Hinweis

Ein Überschreiten der Maximal- bzw. Unterschreiten der Minimalwerte kann zum Funktionsverlust, einer Lebensdauerreduzierung oder zur Zerstörung der Axialkolbeneinheit führen. Weitere zulässige Grenzwerte bezüglich Drehzahlschwankung, reduzierter Winkelbeschleunigung in Abhängigkeit der Frequenz und der zulässigen Anfahr-Winkelbeschleunigung (niedriger als maximale Winkelbeschleunigung) finden Sie im Datenblatt RD 90261.

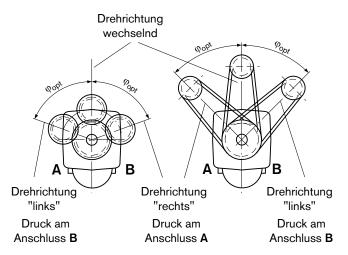
Zulässige Radial- und Axialkraftbelastung der Triebwelle

(Zahnwelle und zylindrische Welle mit Passfeder)

Nenngröße		NG		28	28	32	45	56	56 ⁴⁾	56	
Triebwelle		Ø	mm	25	30	30	30	30	30	35	
Radialkraft, maximal ¹⁾ bei Abstand a	Fq	F _{q max}	kN	5.7	5.4	5.4	7.6	9.5	7.8	9.1	
(vom Wellenbund)	a	а	mm	16	16	16	18	18	18	18	
dabei zulässiges Dre	hmoment	T _{max}	Nm	179	179	204	290	357	294	357	
	Δp	Δ p $_{zul}$	bar	400	400	400	400	400	330	400	
Axialkraft, maximal ²⁾	- . M	+F _{ax max}	N	500	500	500	630	800	800	800	
	F _{ax} ±==	-F _{ax max}	N	0	0	0	0	0	0	0	
Zulässige Axialkraft pr	o bar Betriebsdruck	±F _{ax zul/bar}	N/bar	5.2	5.2	5.2	7.0	8.7	8.7	8.7	
Nenngröße		NG		63	80	80 ⁴⁾	80	90	107	107	
Triebwelle		Ø	mm	35	35	35	40	40	40	45	
Radialkraft, maximal ¹⁾ bei Abstand a	Fq	F _{q max}	kN	9.1	11.6	11.1	11.4	11.4	13.6	14.1	
(vom Wellenbund)	a	a	mm	18	20	20	20	20	20	20	
dabei zulässiges Dre	hmoment	T _{max}	Nm	401	512	488	512	573	679	679	
	Λp	Δ p $_{zul}$	bar	400	400	380	400	400	400	400	
Axialkraft, maximal ²⁾	-	+F _{ax max}	N	800	1000	1000	1000	1000	1250	1250	
	F _{ax} ±==	-F _{ax max}	N	0	0	0	0	0	0	0	
Zulässige Axialkraft pr	o bar Betriebsdruck	±F _{ax zul/bar}	N/bar	8.7	10.6	10.6	10.6	10.6	12.9	12.9	
Nenngröße		NG		125	160	160	180	250	355		
Triebwelle		Ø	mm	45	45	50	50	50	60		
Radialkraft, maximal ¹⁾ bei Abstand a	Fq	F _{q max}	kN	14.1	18.1	18.3	18.3	1.2 ⁵⁾	1.5 ⁵⁾		
(vom Wellenbund)	a	a	mm	20	25	25	25	41	52.5		
dabei zulässiges Dre	hmoment	T _{max}	Nm	796	1021	1021	1146	3)	3)		
	/p	Δ p $_{zul}$	bar	400	400	400	400	3)	3)		
Axialkraft, maximal ²⁾	E +→ ←	+F _{ax max}	N	1250	1600	1600	1600	2000	2500		
	' ax	-F _{ax max}	N	0	0	0	0	0	0		
Zulässige Axialkraft pr	o bar Betriebsdruck	±F _{ax zul/bar}	N/bar	12.9	16.7	16.7	16.7	3)	3)		

- 1) Bei intermittierendem Betrieb
- 2) Maximal zulässige Axialkraft bei Stillstand oder drucklosem Umlauf der Axialkolbeneinheit.
- 3) Bitte Rücksprache
- 4) Eingeschränkte technische Daten nur für Zahnwelle
- 5) Bei Stillstand oder drucklosem Umlauf der Axialkolbeneinheit. Unter Druck sind höherer Kräfte zulässig, bitte Rücksprache.

Beachten


Die Wirkrichtung der zulässigen Axialkraft:

- + F_{ax max} = Erhöhung der Lagerlebensdauer
- F_{ax max} = Reduzierung der Lagerlebensdauer (vermeiden)

Einfluss der Radialkraft Fq auf die Lagerlebensdauer

Durch geeignete Wirkungsrichtung von F_q kann die durch innere Triebwerkskräfte entstehende Lagerbelastung vermindert und somit eine optimale Lagerlebensdauer erzielt werden. Empfohlene Lage des Gegenrades in Abhängigkeit der Drehrichtung am Beispiel:

	Zahnradabtrieb	Keilriemenabtrieb					
NG	φ _{opt}	Φopt					
28 bis 180	± 70°	± 45°					
250 und 355	± 45°	± 70°					

Ermittlung der Kenngrößen

Schluckstrom
$$q_V = \frac{V_g \cdot n}{1000 \cdot \eta_v}$$
 [L/min]

$$Drehzahl \qquad \quad n \; = \; \frac{q_V \bullet 1000 \bullet \eta_V}{V_g} \qquad \qquad [min^{\text{-}1}] \label{eq:prehzahl}$$

Drehmoment
$$T = \frac{V_g \cdot \Delta p \cdot \eta_{mh}}{20 \cdot \pi}$$
 [Nm]

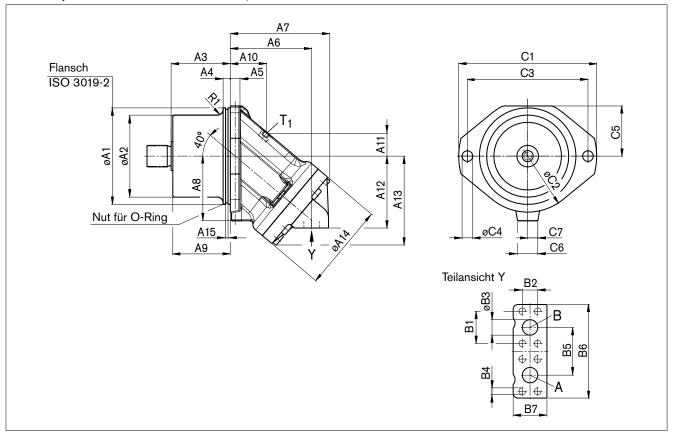
Leistung
$$P = \frac{2 \pi \cdot T \cdot n}{60000} = \frac{q_v \cdot \Delta p \cdot \eta_t}{600} \text{ [kW]}$$

 V_q = Schluckvolumen pro Umdrehung in cm³

 $\Delta p = Differenzdruck in bar$

n = Drehzahl in min-1

η_ν = Volumetrischer Wirkungsgrad


η_{mh} = Mechanisch-hydraulischer Wirkungsgrad

 η_t = Gesamtwirkungsgrad ($\eta_t = \eta_v \cdot \eta_{mh}$)

Abmessungen Nenngröße 28 bis 180

Vor Festlegung Ihrer Konstruktion bitte verbindliche Einbauzeichnung anfordern. Maße in mm

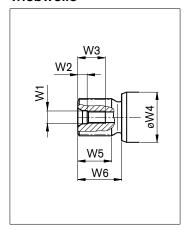
Anschlussplatte 10 - SAE-Flanschanschlüsse, unten

Nenngröße	øA1	øA2	A31)	A4	A5	A6	A7	8 A	Α9	A10	A11	A12	A13	øA14	A15
28, 32	135 _{-0.025}	94 _{-0.5}	88.8	15	16	94	114	95	87.1	45	27	91	106	106	5.2
45	160 _{-0.025}	117 ^{+1.5}	92.3	15	18	109	133	106	90	50	31.3	102	119	118	5.2
56, 63	160 _{-0.025}	121 _{-0.5}	92.3	15	18	122	146	109	90	59	34	107	130	128	5.2
80, 90	190 _{-0.029}	140.3 _{-0.5}	110	15	20	127	157	123	106	54	41	121	145	138	5.2
107, 125	200 _{-0.029}	152.3 _{-0.5}	122.8	15	20	143	178	135	119	58	41	136	157	150	5.2
160, 180	200 _{-0.029}	171.6 _{-0.5}	122.8	15	20	169	206	134	119.3	75	47	149	185	180	5.2

Nenngröße	B1	B2	øB3	B4, DIN 13 ²⁾	B5	В6	B7	C1	øC2	C3	øC4	C5	C6	C7
28, 32	40.5	18.2	13	M8 x 1.25; 15 tief	59	115	40	188	154	160	14	71	42	13
45	50.8	23.8	19	M10 x 1.5; 17 tief	75	147	49	235	190	200	18	82	47.5	15
56, 63	50.8	23.8	19	M10 x 1.5; 17 tief	75	147	48	235	190	200	18	82	36	0
80, 90	57.2	27.8	25	M12 x 1.75; 17 tief	84	166	60	260	220	224	22	98	40	0
107, 125	66.7	31.8	32	M14 x 2; 19 tief	99	194	70	286	232	250	22	103	40	0
160, 180	66.7	31.8	32	M14 x 2; 19 tief	99	194	70	286	232	250	22	104	42	0

Nenngröße	R1	O-Ring ³⁾	Arbeitsanschluss A, B SAE J518	Tankanschluss T ₁ DIN 3852 ²⁾
28, 32	10	126 x 4	1/2 in	M16 x 1.5; 12 tief
45	10	150 x 4	3/4 in	M18 x 1.5; 12 tief
56, 63	10	150 x 4	3/4 in	M18 x 1.5; 12 tief
80, 90	10	180 x 4	1 in	M18 x 1.5; 12 tief
107, 125	16	192 x 4	1 1/4 in	M18 x 1.5; 12 tief
160, 180	12	192 x 4	1 1/4 in	M22 x 1.5; 14 tief

- 1) Bis Wellenbund
- 2) Für die maximalen Anziehdrehmomente sind die allgemeinen Hinweise auf Seite 24 zu beachten.
- 3) Nicht im Lieferumfang enthalten

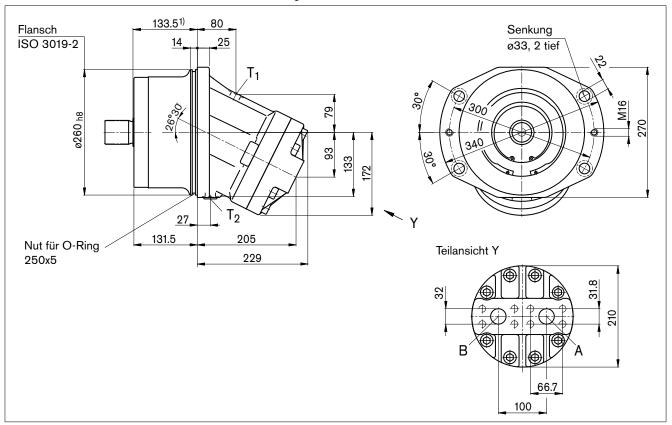

Hinweis

Anschlussplatten 17, 18 und 19 siehe Seite 17 und 20.

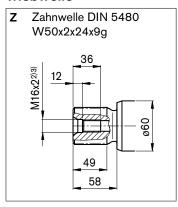
Abmessungen Nenngröße 28 bis 180

Vor Festlegung Ihrer Konstruktion bitte verbindliche Einbauzeichnung anfordern. Maße in mm

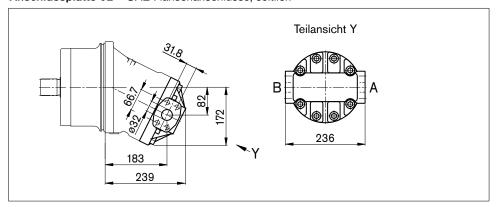
Triebwelle


Nenngröße	Zahnwelle (DIN 5480)	W1 ¹⁾	W2	W3	øW4	W5	W6
28, 32	A W30 x 2 x 14 x 9g	M10 x 1.5	7.5	22	35	27	35
28	Z W25 x 1.25 x 18 x 9g	M8 x 1.25	6	19	35	28	43
45	Z W30 x 2 x 14 x 9g	M12 x 1.75	9.5	28	35	27	35
56, 63	A W35 x 2 x 16 x 9g	M12 x 1.75	9.5	28	40	32	40
56	Z W30 x 2 x 14 x 9g	M12 x 1.75	9.5	28	40	27	35
80, 90	A W40 x 2 x 18 x 9g	M16 x 2	12	36	45	37	45
80	Z W35 x 2 x 16 x 9g	M12 x 1.75	9.5	28	45	32	40
107, 125	A W45 x 2 x 21 x 9g	M16 x 2	12	36	50	42	50
107	Z W40 x 2 x 18 x 9g	M12 x 1.75	9.5	28	50	37	45
160, 180	A W50 x 2 x 24 x 9g	M16 x 2	12	36	60	44	55
160	Z W45 x 2 x 21 x 9g	M16 x 2	12	36	60	42	50

¹⁾ Zentrierbohrung nach DIN 332 (Gewinde nach DIN 13), für die maximalen Anziehdrehmomente sind die allgemeinen Hinweise auf Seite 24 zu beachten.


Abmessungen Nenngröße 250

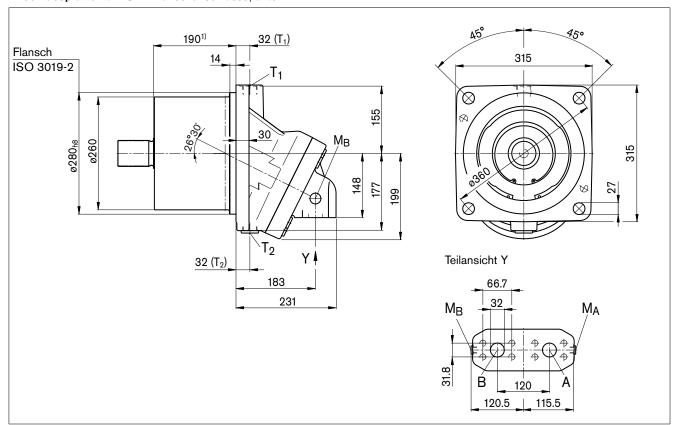
Vor Festlegung Ihrer Konstruktion bitte verbindliche Einbauzeichnung anfordern. Maße in mm


Anschlussplatte 01 - SAE-Flanschanschlüsse, hintenliegend

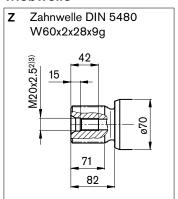
Triebwelle

Anschlussplatte 02 - SAE-Flanschanschlüsse, seitlich

Anschlüsse


Benennung	Anschluss für	Norm	Größe ³⁾	Höchstdruck [bar] ⁴⁾	Zustand ⁸⁾
A, B	Arbeitsleitung Befestigungsgewinde A/B	SAE J518 ⁶⁾ DIN 13	1 1/4 in M14 x 2; 19 tief	400	Ο
T ₁	Tankleitung	DIN 3852 ⁷⁾	M22 x 1.5; 14 tief	3	O ⁵⁾
T ₂	Tankleitung	DIN 3852 ⁷⁾	M22 x 1.5; 14 tief	3	X ⁵⁾

- 1) Bis Wellenbund
- 2) Zentrierbohrung nach DIN 332 (Gewinde nach DIN 13)
- 3) Für die maximalen Anziehdrehmomente sind die allgemeinen Hinweise auf Seite 24 zu beachten.
- 4) Anwendungsspezifisch können kurzzeitig Druckspitzen auftreten. Bei der Auswahl von Messgeräten und Armaturen beachten.
- 5) Abhängig von Einbaulage, muss T₁ oder T₂ angeschlossen werden (siehe auch Einbauhinweise auf Seite 23).
- 6) Nur Abmessungen nach SAE J518, metrisches Befestigungsgewinde abweichend von Norm.
- 7) Die Ansenkung kann tiefer sein als in der Norm vorgesehen.
- $_{8)}$ O = Muss angeschlossen werden (im Lieferzustand verschlossen)
 - X = Verschlossen (im Normalbetrieb)


Abmessungen Nenngröße 355

Vor Festlegung Ihrer Konstruktion bitte verbindliche Einbauzeichnung anfordern. Maße in mm

Anschlussplatte 10 - SAE-Flanschanschlüsse, unten

Triebwelle

Anschlüsse

Benennung	Anschluss für	Norm	Größe ³⁾	Höchstdruck [bar] ⁴⁾	Zustand ⁸⁾
A, B	Arbeitsleitung Befestigungsgewinde A/B	SAE J518 ⁶⁾ DIN 13	1 1/4 in M14 x 2; 22 tief	400	0
T ₁	Tankleitung	DIN 3852 ⁷⁾	M33 x 2; 18 tief	3	O ⁵⁾
T ₂	Tankleitung	DIN 3852 ⁷⁾	M33 x 2; 18 tief	3	X ⁵⁾

- 1) Bis Wellenbund
- 2) Zentrierbohrung nach DIN 332 (Gewinde nach DIN 13)
- 3) Für die maximalen Anziehdrehmomente sind die allgemeinen Hinweise auf Seite 24 zu beachten.
- 4) Anwendungsspezifisch können kurzzeitig Druckspitzen auftreten. Bei der Auswahl von Messgeräten und Armaturen beachten.
- 5) Abhängig von Einbaulage, muss T₁ oder T₂ angeschlossen werden (siehe auch Einbauhinweise auf Seite 23).
- 6) Nur Abmessungen nach SAE J518, metrisches Befestigungsgewinde abweichend von Norm.
- 7) Die Ansenkung kann tiefer sein als in der Norm vorgesehen.
- 8) O = Muss angeschlossen werden (im Lieferzustand verschlossen)
 - X = Verschlossen (im Normalbetrieb)

Spül- und Speisedruckventil

Das Spül- und Speisedruckventil wird zur Abfuhr von Wärme aus dem Hydraulikkreislauf eingesetzt.

Im offenen Kreislauf dient es ausschließlich zur Spülung des Gehäuses.

Im geschlossenen Kreislauf wird zusätzlich zur Gehäusespülung auch der minimale Speisedruck abgesichert.

Aus der jeweiligen Niederdruckseite wird Druckflüssigkeit in das Motorgehäuse abgeführt. Zusammen mit der Leckflüssigkeit wird diese in den Tank abgeleitet. Im geschlossenen Kreislauf muss die entzogene Druckflüssigkeit mit gekühlter Druckflüssigkeit durch die Speisepumpe ersetzt werden.

Das Ventil ist bei der Anschlussplatte 027 (NG45 bis 180 und 250) und bei der Anschlussplatte 107 (NG355) direkt an den Konstantmotor angebaut.

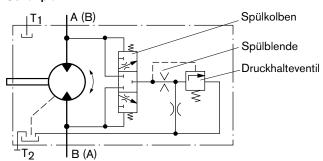
Öffnungsdruck Druckhalteventil

(beachten bei Primärventil-Einstellung)
Nenngröße 45 bis 355, fest eingestellt______16 bar

Schaltdruck Spülkolben Ap

Nenngröße 45 bis 355 ______ 8±1 bar

Spülmenge q_v


Mittels Blenden (Drossel bei integriertem Ventil) können unterschiedliche Spülmengen eingestellt werden.

Folgende Angaben basieren auf:

 $\Delta p_{ND} = p_{ND} - p_G = 25$ bar und v = 10 mm²/s ($p_{ND} = Niederdruck, p_G = Gehäusedruck$)

Vor Festlegung Ihrer Konstruktion bitte verbindliche Einbauzeichnung anfordern. Maße in mm

Schaltplan

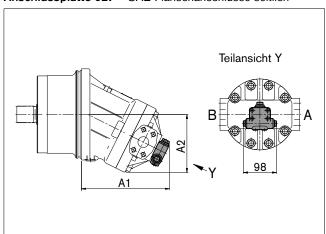
Standardspülmengen

Spül- und Speisedruckventil, angebaut (Code 7)

Nenngröße	Spülmenge q _v [L/min]	ø [mm]	Materialnummer der Blende
45	3.5	1.2	R909651766
107, 125	8	1.8	R909419696
160, 180	10	2.0	R909419697
250	10	2.0	R909419697
355	16	2.5	R910803019

Bei den Nenngrößen 45 bis 180 können Blenden für Spülmengen von 3.5 bis 10 L/min geliefert werden. Bei abweichenden Spülmengen, bitte gewünschte Spülmenge bei Bestellung angeben. Die Spülmenge ohne Blende beträgt ca. 12 bis 14 L bei Niederdruck $\Delta p_{ND} = 25$ bar.

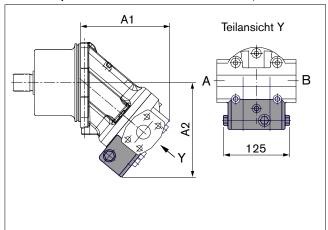
Spül- und Speisedruckventil, integriert (Code 9)


Nenngröße	Drossel-ø [mm]	q _v [L/min]
56, 63,	1.5	6
80, 90	1.8	7.3

Spül- und Speisedruckventil

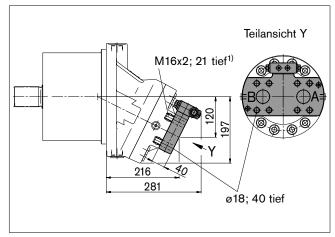
Vor Festlegung Ihrer Konstruktion bitte verbindliche Einbauzeichnung anfordern. Maße in mm

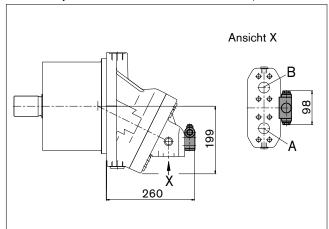
Abmessungen


Nenngröße 107 bis 250 Anschlussplatte 027 – SAE-Flanschanschlüsse seitlich

Nenngröße	A1	A2
107, 125	211	192
160, 180	232	201
250	260.5	172

Nenngröße 56 bis 90


Anschlussplatte 029 - SAE-Flanschanschlüsse, seitlich


Nenngröße	A1	A2
56, 63	165	176
80, 90	178	186.7

1) DIN 13, für die maximalen Anziehdrehmomente sind die allgemeinen Hinweise auf Seite 24 zu beachten.

Nenngröße 355 Anschlussplatte 017 – SAE-Flanschanschlüsse, hinten

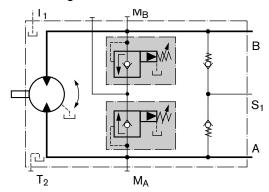
Anschlussplatte 107 - SAE-Flanschanschlüsse, unten

Druckbegrenzungsventil

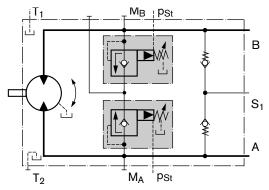
Die Druckbegrenzungsventile MHDB (siehe RD 64642) schützen den Hydromotor vor Überlastung. Sobald der eingestellte Öffnungsdruck erreicht wird, strömt Druckflüssigkeit von der Hochdruckseite auf die Niederdruckseite.

Die Druckbegrenzungsventile sind nur in Verbindung mit den Anschlussplatten 181, 191 oder 192 lieferbar (Bremsventil zum Anbau an Anschlussplatte 181 siehe nächste Seite).

Einstellbereich Öffnungsdruck ______ 50 bis 420 bar

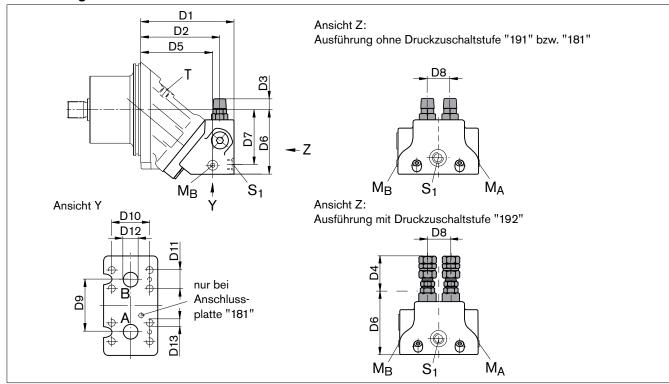

Bei Ausführung "mit Druckzuschaltstufe" (192) kann durch Zuschalten eines externen Steuerdruckes von 25 bis 30 bar am Anschluss P_{St} eine höhere Druckeinstellung realisiert werden.

Bei Bestellung bitte im Klartext angeben:


- Öffnungsdruck Druckbegrenzungsventil
- Öffnungsdruck bei zugeschaltetem Steuerdruck an P_{St} (nur bei Ausführung 192)

Vor Festlegung Ihrer Konstruktion bitte verbindliche Einbauzeichnung anfordern. Maße in mm

Ausführung ohne Druckzuschaltstufe "191"


Ausführung mit Druckzuschaltstufe "192"

Druckbegrenzungsventil

Vor Festlegung Ihrer Konstruktion bitte verbindliche Einbauzeichnung anfordern. Maße in mm

Abmessungen

Nenngrö	Ве	D1	D2	D3	D4	D5	D6	D7	D8	D9	D10	D11	D12	D13 ²⁾
28, 32	MHDB. 16	145	122	25	68	110	102	87	36	66	50.8	23.8	ø19	M10; 17 tief
45	MHDB. 16	161	137	22	65	126	113	98	36	66	50.8	23.8	ø19	M10; 17 tief
56, 63	MHDB. 22	189	162	19	61	147	124	105	42	75	50.8	23.8	ø19	M10; 13 tief
80, 90	MHDB. 22	193	165	17.5	59	151	134	114	42	75	57.2	27.8	ø25	M12; 18 tief
107, 125	MHDB. 32	216	184	10	52	168	149.5	130	53	84	66.7	31.8	ø32	M14; 19 tief
160, 180	MHDB.32	249	218	5	47	202	170	149	53	84	66.7	31.8	ø32	M14; 19 tief

Nenngröße	A, B	S ₁ ¹⁾	M_A , $M_B^{1)}$	P _{St} 1)
28, 32	3/4 in	M22 x 1.5; 14 tief	M20 x 1.5; 14 tief	G 1/4
45	3/4 in	M22 x 1.5; 14 tief	M20 x 1.5; 14 tief	G 1/4
56, 63	3/4 in	M26 x 1.5; 16 tief	M26 x 1.5; 16 tief	G 1/4
80, 90	1 in	M26 x 1.5; 16 tief	M26 x 1.5; 16 tief	G 1/4
107, 125	1 1/4 in	M26 x 1.5; 16 tief	M26 x 1.5; 16 tief	G 1/4
160, 180	1 1/4 in	M26 x 1.5; 16 tief	M30 x 1.5; 16 tief	G 1/4

Montagehinweis für Anschlussplatte mit Druckzuschaltstufe "192":

Bei der Montage der Hydraulikleitung am pst-Anschluss muss die Kontermutter gegengehalten werden!

Anschlüsse

Benennung	Anschluss für	Norm	Größe	Höchstdruck [bar]2)	Zustand 3)
A, B	Arbeitsleitung	SAE J518	siehe oben	450	0
S ₁	Einspeisung (nur bei Anschlussplatte 191/192)	DIN 3852	siehe oben	5	0
M _A , M _B	Messung Betriebsdruck	DIN 3852	siehe oben	450	Χ
P _{St}	Steuerdruck (nur bei Anschlussplatte 192)	DIN ISO 228	siehe oben	30	0

- 1) Für die maximalen Anziehdrehmomente sind die allgemeinen Hinweise auf Seite 24 zu beachten.
- 2) Anwendungsspezifisch können kurzzeitig Druckspitzen auftreten. Bei der Auswahl von Messgeräten und Armaturen beachten.
- 3) O = Muss angeschlossen werden (im Lieferzustand verschlossen)
 - X = Verschlossen (im Normalbetrieb)

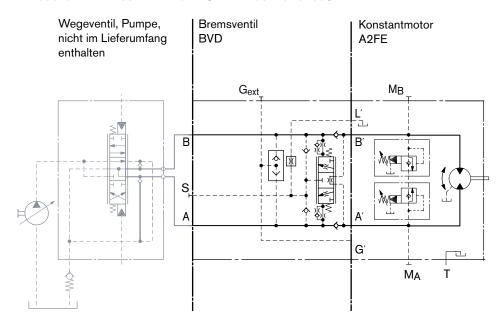
Vor Festlegung Ihrer Konstruktion bitte verbindliche Einbauzeichnung anfordern. Maße in mm

Funktion

Fahr-/Windenbremsventile sollen im offenen Kreislauf die Gefahr von Überdrehzahl und Kavitation von Axialkolbenmotoren verringern. Kavitation entsteht, wenn beim Abbremsen, bei Talfahrt oder bei Lastabsenkung der Motor schneller dreht als es dem zugeführtem Volumenstrom entspricht.

Bei Einbruch des Zulaufdruckes drosselt der Bremskolben den Rücklaufstrom und bremst den Motor bis der Zulaufdruck wieder ca. 20 bar erreicht hat.

Beachten

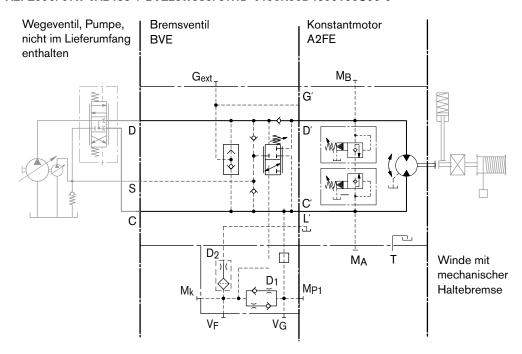

- BVD bei Nenngröße 28 bis 180 und BVE bei Nenngröße 107 bis 180 lieferbar.
- Das Bremsventil muss in der Bestellung zusätzlich angegeben werden. Wir empfehlen das Bremsventil und den Motor im Set zu bestellen. Bestellbeispiel: A2FE90/61W-VAB188 + BVD20F27S/41B-V03K16D0400S12
- Das Bremsventil ersetzt nicht die mechanische Betriebs- und Haltebremse.
- Detaillierte Hinweise zum Bremsventil BVD in RD 95522 und BVE in RD 95525 beachten!
- Für die Auslegung des Bremslüftventils benötigen wir von der mechanischen Haltebremse:
 - den Druck bei Öffnungsbeginn
 - das Volumen des Bremskolbens zwischen minimalem Hub (Bremse geschlossen) und maximalem Hub (Bremse mit 21 bar gelüftet)
 - die benötigte Schließzeit bei warmem Gerät (Ölviskosität ca. 15 mm²/s)

Fahrbremsventil BVD..F

Anwendungsbeispiel für

- Fahrantrieb bei Mobilbaggern

Schaltplanbeispiel für Fahrantrieb bei Mobilbaggern A2FE090/61W-VAB188 + BVD20F27S/41B-V03K16D0400S12

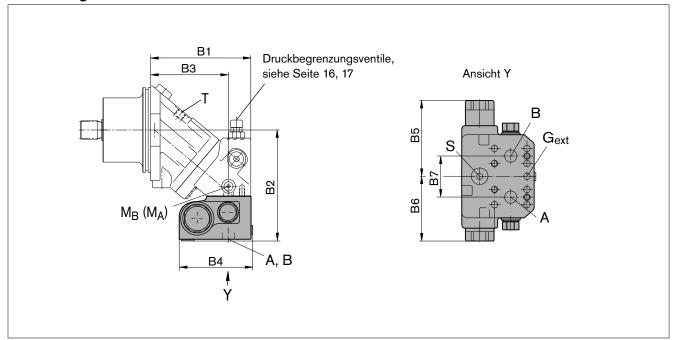

Vor Festlegung Ihrer Konstruktion bitte verbindliche Einbauzeichnung anfordern. Maße in mm

Windenbremsventil BVD..W und BVE

Anwendungsmöglichkeiten

- Windenantrieb in Kranen (BVD und BVE)
- Turasantrieb in Raupenbaggern (BVD)

Schaltplanbeispiel für Windenantrieb in Kranen A2FE090/61W-VAB188 + BVE25W385/51ND-V100K00D4599T30S00-0


Zulässiger Schluckstrom bzw. Druck bei Einsatz von DBV und BVD/BVE

	Ohne Ventil		Eingeschrä	nkte Werte b	ei Einsatz	von DBV ι	und BVD/BVE				
Motor			DBV	DBV			BVD/BVE				
NG	p _{nom} /p _{max} [bar]	q _{V max} [L/min]	NG	p _{nom} /p _{max} [bar]	q _V [L/min]	Code	NG	p _{nom} /p _{max} [bar]	q _V [L/min]	Code	
28	400/450	176	16	350/420	100	181	20	350/420	100	188	
32		201				191, 192	(BVD)				
45		255									
56		280	22		240				220		
63		315									
80		360									
90		405									
107		427				171				178	
125		500				191, 192					
107		427	32		400	181	25		320	188	
125		500				191, 192	(BVD/BVE)				
160		577									
180		648									

DBV _____Druckbegrenzungsventil
BVD _____Bremsventil, doppelt wirkend
BVE _____Bremsventil, einseitig wirkend

Vor Festlegung Ihrer Konstruktion bitte verbindliche Einbauzeichnung anfordern. Maße in mm

Abmessungen

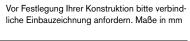
A2FE	Bremsventil											
Nenngröße	Тур	Anschlüsse	Abmes	sungen								
		A, B	B1	B2	В3	B4 (S)	B4 (L)	B5	В6	В7		
28, 32	BVD 20 16	3/4 in	145	175	110	142	147	139	98	66		
45	BVD 20 16	3/4 in	161	196	126	142	147	139	98	66		
56, 63	BVD 20 17	3/4 in	189	197	147	142	147	139	98	75		
80, 90	BVD 20 27	1 in	193	207	151	142	147	139	98	75		
107, 125	BVD 20 28	1 in	216	238	168	142	147	139	98	84		
107, 125	BVD 25 38	1 ¹ / ₄ in	216	239	168	158	163	175	120.5	84		
160, 180	BVD 25 38	1 ¹ / ₄ in	249	260	202	158	163	175	120.5	84		
107, 125	BVE 25 38	1 ¹ / ₄ in	216	240	168	167	172	214	137	84		
160, 180	BVE 25 38	1 ¹ / ₄ in	249	260	202	167	172	214	137	84		
250		•	•		Auf Anfr	age						

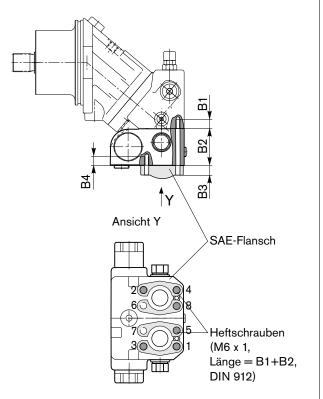
Anschlüsse

Benennung	Anschluss für	Ausführung	Norm	Größe¹)	Höchstdruck [bar] ²⁾	Zustand ⁴⁾
A, B	Arbeitsleitung		SAE J518	siehe Tabelle oben	420	0
S	Einspeisung	BVD20	DIN 3852 ³⁾	M22 x 1.5; 14 tief	30	Χ
		BVD25, BVE25	DIN 3852 ³⁾	M27 x 2; 16 tief	30	Χ
Br	Bremslüftung, reduzierter Hochdruck	L	DIN 3852 ³⁾	M12 x 1.5; 12.5 tief	30	0
G _{ext}	Bremslüftung, Hochdruck	S	DIN 3852 ³⁾	M12 x 1.5; 12.5 tief	420	Χ
M _A , M _B	Messung Druck A und B		ISO 6149 ³⁾	M12 x 1.5; 12 tief	420	Χ

- 1) Für die maximalen Anziehdrehmomente sind die allgemeinen Hinweise auf Seite 24 zu beachten.
- 2) Anwendungsspezifisch können kurzzeitig Druckspitzen auftreten. Bei der Auswahl von Messgeräten und Armaturen beachten.
- 3) Die Ansenkung kann tiefer sein als in der Norm vorgesehen.
- 4) O = Muss angeschlossen werden (im Lieferzustand verschlossen)
 - X = Verschlossen (im Normalbetrieb)

Befestigung des Bremsventils


Das Bremsventil wird bei der Auslieferung mit zwei Heftschrauben (Transportsicherung) am Motor befestigt. Die Heftschrauben dürfen bei der Befestigung der Arbeitsleitungen nicht entfernt werden. Bei getrennter Lieferung von Bremsventil und Motor muss das Bremsventil zunächst mit den mitgelieferten Heftschrauben an der Anschlussplatte des Motors befestigt werden. Die endgültige Befestigung des Bremsventils am Motor erfolgt durch die Verschraubung der SAE-Flansche mit folgenden Schrauben:


6 Schrauben (1, 2, 3, 4, 5, 8) _____ Länge B1+B2+B3 2 Schrauben (6, 7) ____ Länge B3+B4

Zum Anziehen der Schrauben ist die vorgegebene Reihenfolge 1 bis 8 (siehe nachfolgende Skizze) in zwei Phasen unbedingt einzuhalten.

In der ersten Phase sollen die Schrauben mit halbem Anziehdrehmoment und in der zweiten Phase mit maximalem Anziehdrehmoment (siehe nachfolgende Tabelle) angezogen werden.

Gewinde	Festigkeits- klasse	Anziehdreh- moment [Nm]
M6 x 1 (Heftschraube)	10.9	15.5
M10	10.9	75
M12	10.9	130
M14	10.9	205

Nenngröße	28, 32, 45	56, 63	80, 90	107, 125, 160, 180	107, 125
Anschlussplatte	18				17
B1 ¹⁾	M10 x 1.5; 17 tief	M10 x 1.5; 17 tief	M12 x 1.75; 18 tief	M14 x 2; 19 tief	M12 x 1.75; 17 tief
B2	782)	68	68	85	68
B3	kundenspezifisch				
B4	M10 x 1.5; 15 tief	M10 x 1.5; 15 tief	M12 x 1.75; 16 tief	M14 x 2; 19 tief	M12 x 1.75; 16 tief

- 1) Minimal notwendige Einschraublänge 1 x ø-Gewinde
- 2) Inklusive Zwischenplatte

Drehzahlsensoren

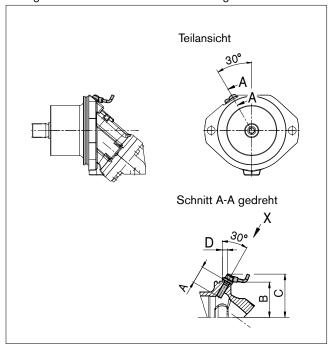
Die Ausführung A2FE...U bzw. A2FE...F ("Für Drehzahlsensor vorbereitet", d. h. ohne Sensor) beinhaltet eine Verzahnung am Triebwerk.

Der Anschluss ist bei Auslieferung "Für Drehzahlsensor vorbereitet" mit einer druckfesten Abdeckung verschlossen.

Mit dem angebauten Drehzahlsensor DSA bzw. HDD kann das zur Drehzahl des Motors proportionale Signal erfasst werden. Der Sensor erfasst die Drehzahl und Drehrichtung.

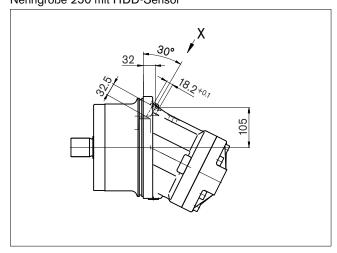
Typschlüssel, technische Daten, Abmessungen, Angaben zum Stecker und Sicherheitshinweise des Sensors sind dem dazugehörigen Datenblatt zu entnehmen.

DSA	RD 95133
HDD	RD 95135

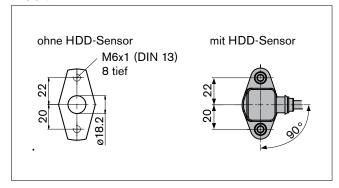

Der Sensor wird am speziell dafür vorgesehenen Anschluss mit einer Befestigungsschraube angebaut.

Wir empfehlen den Einschubmotor A2FE komplett mit angebautem Sensor zu bestellen.

Ausführung "V"


Nenngröße 28 bis 180 mit DSA-Sensor

Nenngröße 250 mit DSA-Sensor auf Anfrage.



Vor Festlegung Ihrer Konstruktion bitte verbindliche Einbauzeichnung anfordern. Maße in mm

Ausführung "H" Nenngröße 250 mit HDD-Sensor

Ansicht X

Nenng	röße		28, 32	45	56, 63	80, 90	107, 125	160, 180	250
Zähnez	zahl		38	45	47	53	59	67	78
DSA	Α	Einbautiefe (Toleranz ± 0.1)	32	32	32	32	32	32	32
	В	Auflagefläche	66	66 auf Anfrage					
	С		auf Anfrage						
	D		12.3	auf An	frage				

Einbauhinweise

Allgemeines

Die Axialkolbeneinheit muss bei Inbetriebnahme und während des Betriebes mit Druckflüssigkeit gefüllt und entlüftet sein. Dies ist auch bei längerem Stillstand zu beachten, da sich die Axialkolbeneinheit über die Hydraulikleitungen entleeren kann.

Die Leckflüssigkeit im Gehäuseraum muss über den höchstgelegenen Tankanschluss (T_1,T_2) zum Tank abgeführt werden.

Bei Kombinationen von mehreren Einheiten ist darauf zu achten, dass der jeweilige Gehäusedruck nicht überschritten wird. Bei Druckdifferenzen an den Tankanschlüssen der Einheiten, muss die gemeinsame Tankleitung so weit verändert werden, dass der geringste zulässige Gehäusedruck aller angeschlossenen Einheiten in keiner Situation überschritten wird. Ist das nicht möglich, so müssen gegebenenfalls separate Tankleitungen verlegt werden.

Um günstige Geräuschwerte zu erzielen, sind alle Verbindungsleitungen über elastische Elemente abzukoppeln und Übertankeinbau zu vermeiden.

Die Tankleitung muss in jedem Betriebszustand unterhalb des minimalen Flüssigkeitsniveaus in den Tank münden.

Einbaulage

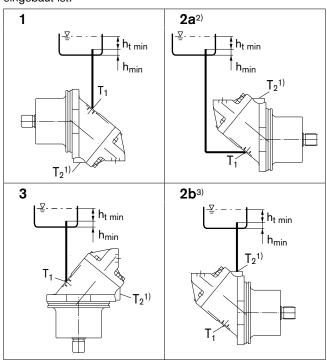
Siehe folgende Beispiele 1 bis 5. Weitere Einbaulagen sind nach Rücksprache möglich.

Empfohlene Einbaulage: 1 und 2.

Einbaulage	Entlüften	Befüllen
1	_	T ₁
2	-	T ₁ (NG28 bis 180) T ₂ (NG250 und 355)
3	_	T ₁
4	(L ₁)	T ₁ , (L ₁)
5	(L ₁)	T ₂ , (L ₁)
6	(L ₁)	T ₁ , (L ₁)

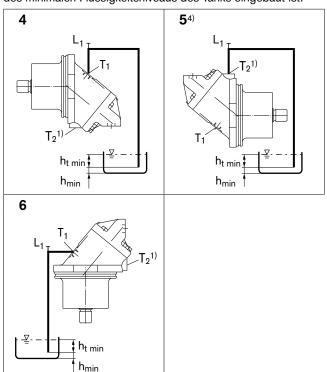
L₁ Befüllen / EntlüftenT₁, T₂ Tankanschluss

 $\mathbf{h_{t\,min}}$ Minimal erforderliche Eintauchtiefe (200 mm)


hmin Minimal erforderlicher Abstand zum Tankboden

(100 mm)

- Standard bei Nenngröße 250 und 355, Sonderausführung bei Nenngröße 28 bis 180
- Verrohrungsvorschlag ohne Anschluss T₂ (Standard bei Nenngröße 28 bis 180).
- 3) Verrohrungsvorschlag mit Anschluss T₂ (Standard bei Nenngröße 250 bis 355, Sonderausführung bei Nenngröße 28 bis 180).
- 4) Einbaulage nur zulässig, wenn Anschluss T₂ vorhanden ist (Standard bei Nenngröße 250 und 355, Sonderausführung bei Nenngröße 28 bis 180).


Untertankeinbau (Standard)

Untertankeinbau liegt vor, wenn die Axialkolbeneinheit unterhalb des minimalen Flüssigkeitsniveaus außerhalb des Tanks eingebaut ist.

Übertankeinbau

Übertankeinbau liegt vor, wenn die Axialkolbeneinheit oberhalb des minimalen Flüssigkeitsniveaus des Tanks eingebaut ist.

Allgemeine Hinweise

- Der Motor A2FE ist für den Einsatz im offenen und geschlossenen Kreislauf vorgesehen.
- Die Projektierung, Montage und Inbetriebnahme der Axialkolbeneinheit setzen den Einsatz von geschulten Fachkräften voraus.
- Lesen Sie vor dem Einsatz der Axialkolbeneinheit die zugehörige Betriebsanleitung gründlich und vollständig. Fordern Sie diese gegebenenfalls bei Bosch Rexroth an.
- Während und kurz nach dem Betrieb besteht an der Axialkolbeneinheit Verbrennungsgefahr. Geeignete Sicherheitsmaßnahmen vorsehen (z. B. Schutzkleidung tragen).
- Abhängig vom Betriebszustand der Axialkolbeneinheit (Betriebsdruck, Flüssigkeitstemperatur) können sich Verschiebungen der Kennlinie ergeben.
- Arbeitsanschlüsse:
 - Die Anschlüsse und Befestigungsgewinde sind für den angegebenen Höchstdruck ausgelegt. Der Maschinenbzw. Anlagenhersteller muss dafür sorgen, dass die Verbindungselemente und Leitungen den vorgesehenen Einsatzbedingungen (Druck, Volumenstrom, Druckflüssigkeit, Temperatur) mit den notwendigen Sicherheitsfaktoren entsprechen.
 - Die Arbeits- und Funktionsanschlüsse sind nur für den Anbau von hydraulischen Leitungen vorgesehen.

- Die angegebenen Daten und Hinweise sind einzuhalten.
- Das Produkt ist nicht als Bestandteil für das Sicherheitskonzept einer Gesamtmaschine gemäß ISO13849 freigegeben.
- Es gelten die folgenden Anziehdrehmomente:
 - Armaturen:

Beachten Sie die Herstellerangaben zu den Anziehdrehmomenten der verwendeten Armaturen.

- Befestigungsschrauben:
- Für Befestigungsschrauben mit metrischem ISO-Gewinde nach DIN 13 bzw. Gewinde nach ASME B1.1 empfehlen wir die Überprüfung des Anziehdrehmoments im Einzelfall gemäß VDI 2230.
- Einschraubloch der Axialkolbeneinheit:
 Die maximal zulässigen Anziehdrehmomente M_{G max} sind Maximalwerte der Einschraublöcher und dürfen nicht überschritten werden. Werte siehe nachfolgende Tabelle.
- Verschlussschrauben:

Für die mit der Axialkolbeneinheit mitgelieferten metallischen Verschlussschrauben gelten die erforderlichen Anziehdrehmomente der Verschlussschrauben M_V. Werte siehe nachfolgende Tabelle.

Anschlüsse Norm	Gewindegröße	Maximal zulässiges Anziehdrehmomet der	Erforderliches Anziehdrehmoment der	Schlüsselweite Innensechskant der	
NOTH	dewindegrobe	Einschraublöcher M _{G max}	Verschlussschrauben M _V ¹⁾	Verschlussschrauben	
DIN 3852	M12 x 1.5	50 Nm	25 Nm ²⁾	6 mm	
	M16 x 1.5	100 Nm	50 Nm	8 mm	
	M18 x 1.5	140 Nm	60 Nm	8 mm	
	M20 x 1.5	170 Nm	80 Nm	10 mm	
	M22 x 1.5	210 Nm	80 Nm	10 mm	
	M26 x 1.5	230 Nm	120 Nm	12 mm	
	M27 x 2	330 Nm	135 Nm	12 mm	
	M30 x 2	420 Nm	215 Nm	17 mm	
	M33 x 2	540 Nm	225 Nm	17 mm	
DIN ISO 228	G 1/4	40 Nm	-	-	

¹⁾ Die Anziehdrehmomente gelten für den Lieferzustand "trocken" sowie den montagebedingten, "leicht geölten" Zustand der Schraube.

Bosch Rexroth AG Mobile Applications Glockeraustraße 4 89275 Elchingen, Germany Tel. +49 7308 82-0 Fax +49 7308 7274

An den Kelterwiesen 14 72160 Horb, Germany Tel. +49 7451 92-0 Fax +49 7451 8221

info.brm@boschrexroth.de

www.boschrexroth.com/axialkolbenmotoren

© Alle Rechte bei Bosch Rexroth AG, auch für den Fall von Schutzrechtsanmeldungen. Jede Verfügungsbefugnis, wie Kopier- und Weitergaberecht, bei uns.

Die angegebenen Daten dienen allein der Produktbeschreibung. Eine Aussage über eine bestimmte Beschaffenheit oder eine Eignung für einen bestimmten Einsatzzweck kann aus unseren Angaben nicht abgeleitet werden. Die Angaben entbinden den Verwender nicht von eigenen Beurteilungen und Prüfungen. Es ist zu beachten, dass unsere Produkte einem natürlichen Verschleiß- und Alterungsprozess unterliegen.

Änderungen vorbehalten.

 $_{2)}$ Im Zustand "leicht geölt" reduziert sich M_{V} bei M12 x 1.5 auf 17 Nm.