

Axial piston fixed motor A2FM/A2FE Series 70

- A2FMN, A2FEN (sizes 28 to 107): Nominal pressure 300 bar
 Maximum pressure 350 bar
- ► A2FMM, A2FEM (sizes 23 to 125): Nominal pressure 400 bar Maximum pressure 450 bar
- ► A2FMH, A2FEH (sizes 45 to 125): Nominal pressure 450 bar Maximum pressure 500 bar

Features

- ► Fixed motor with axial tapered piston rotary group of bent-axis design, for hydrostatic drives in open and closed circuits
- ► For use in mobile and stationary applications
- ► Far-reaching integration of the plug-in version in mechanical gears due to recessed mounting flange located in the center of the case (extremely space-saving construction)
- ► Easy to install, simply plug the plug-in version into the mechanical gearbox
- ► The output speed depends on the flow of the pump and the displacement of the motor.
- ► The output torque increases with the pressure differential between the high-pressure side and the low-pressure side.
- ► Finely graduated sizes permit far-reaching adaptation to the drive concerned
- ► High power density
- ► Small dimensions
- ► High total efficiency
- Good starting efficiency
- ▶ Optional with integrated flushing valve

Contents

Hydraulic fluids Flow direction Working pressure range Technical data Dimensions A2FM, sizes 23, 28, 32, 37, 45 Dimensions A2FE, sizes 23, 28, 32, 37, 45 Dimensions A2FM, sizes 45, 56, 63 and 80 Dimensions A2FE, sizes 45, 56, 63 and 80 Dimensions A2FM, sizes 45, 56, 63 and 80 Dimensions A2FM, sizes 80, 90 and 107 Dimensions A2FE, sizes 80, 90 and 107 Dimensions A2FM, sizes 107 and 125 Dimensions A2FM, sizes 107 and 125 Flushing and boost-pressure valve, integrated
Working pressure range Technical data Dimensions A2FM, sizes 23, 28, 32, 37, 45 Dimensions A2FE, sizes 23, 28, 32, 37, 45 Dimensions A2FM, sizes 45, 56, 63 and 80 Dimensions A2FE, sizes 45, 56, 63 and 80 Dimensions A2FM, sizes 80, 90 and 107 Dimensions A2FE, sizes 80, 90 and 107 Dimensions A2FM, sizes 107 and 125 Dimensions A2FM, sizes 107 and 125 32
Technical data Dimensions A2FM, sizes 23, 28, 32, 37, 45 Dimensions A2FE, sizes 23, 28, 32, 37, 45 Dimensions A2FM, sizes 45, 56, 63 and 80 Dimensions A2FE, sizes 45, 56, 63 and 80 Dimensions A2FM, sizes 80, 90 and 107 Dimensions A2FE, sizes 80, 90 and 107 Dimensions A2FM, sizes 107 and 125 Dimensions A2FM, sizes 107 and 125 34
Dimensions A2FM, sizes 23, 28, 32, 37, 45 Dimensions A2FE, sizes 23, 28, 32, 37, 45 Dimensions A2FM, sizes 45, 56, 63 and 80 Dimensions A2FE, sizes 45, 56, 63 and 80 Dimensions A2FM, sizes 80, 90 and 107 Dimensions A2FE, sizes 80, 90 and 107 Dimensions A2FM, sizes 107 and 125 Dimensions A2FM, sizes 107 and 125 34
Dimensions A2FE, sizes 23, 28, 32, 37, 45 Dimensions A2FM, sizes 45, 56, 63 and 80 Dimensions A2FE, sizes 45, 56, 63 and 80 Dimensions A2FM, sizes 80, 90 and 107 Dimensions A2FE, sizes 80, 90 and 107 Dimensions A2FM, sizes 107 and 125 Dimensions A2FM, sizes 107 and 125 34
Dimensions A2FM, sizes 45, 56, 63 and 80 Dimensions A2FE, sizes 45, 56, 63 and 80 Dimensions A2FM, sizes 80, 90 and 107 Dimensions A2FE, sizes 80, 90 and 107 Dimensions A2FM, sizes 107 and 125 Dimensions A2FM, sizes 107 and 125 34
Dimensions A2FE, sizes 45, 56, 63 and 80 Dimensions A2FM, sizes 80, 90 and 107 Dimensions A2FE, sizes 80, 90 and 107 Dimensions A2FM, sizes 107 and 125 Dimensions A2FM, sizes 107 and 125 34
Dimensions A2FM, sizes 80, 90 and 107 Dimensions A2FE, sizes 80, 90 and 107 Dimensions A2FM, sizes 107 and 125 Dimensions A2FM, sizes 107 and 125 32
Dimensions A2FE, sizes 80, 90 and 107 Dimensions A2FM, sizes 107 and 125 Dimensions A2FM, sizes 107 and 125 34
Dimensions A2FM, sizes 107 and 125 Dimensions A2FM, sizes 107 and 125 32
Dimensions A2FM, sizes 107 and 125
•
Flushing and boost-pressure valve, integrated 38
Pressure relief valve 39
Counterbalance valve BVD 4
Port plate with integrated check valve (U) 44
Flow direction 44
Speed sensors DSA and DSM 45
Installation instructions 46
Safety instructions 48

Type code

0	1 02	03	04		05	06	6 07	08	3	09	1	0	11	1:	_	13	14	ŀ		15
A:	2F			1	70	N	W	V	,										_	
Avial	piston unit								•		•									
01	Bent-axis of	lesign, fix	ed displa	cement									-							A2F
	1																			
02	ting mode Motor, star	ndard vers	ion										-							M
02	Motor, plu												-							E
D		5 10.0.0	···						000		000	007	045	050	000	000	000	407	405	
	ure range	occura. 2	00 har n	avimus	o proces	uro. 25	=0 bor		023	028	1	037	1		063	080		107	125	N
03	Nominal p									0	0	0 -	•	•	•	•	•	•	0	M
	Nominal p									_	_	-	-	•	•	•		0	0	Н
	1	essure. 4	JO Dai, II	Iaxiiiiuii	i piessi	uie. Ju	DO DAI						_		_		_			
Size (1										ı	1		1			1	ı	1	
04	Geometric see technic								023	028	032	037	045	056	063	080	090	107	125	
	1	zai data o	ii page 1								<u> </u>							ļ		
Series	1																			
05	Series 7, ii	idex U																		70
Versio	n of port a																			
	Metric por	ts accordi	ng to DIN	√ 3852 v	with pro	ofile se	aling ring	g, metri	c fas	stenin	g thre	ead ac	cordi	ng to	DIN 1	3				N
06																				
	ional direct	on																		
	ional direct		ft, bidire	ctional																W
Rotati	Viewed on		ft, bidire	ctional																W
Rotati 07	1	drive sha		ctional																v
Rotati 07 Sealin 08	Viewed on ng material FKM (fluor	drive sha		ctional					022	029	022	027	045	056	063	090	090	107	125	
Rotati 07 Sealin 08 Mount	Viewed on ng material FKM (fluor ting flange	drive sha			1 (only	availak	ole for A2		023	028	I	037	1	056	063	080	1		125	V
Rotati 07 Sealin 08	Viewed on ng material FKM (fluor	drive sha		100-4			ole for A2	2FM)	•	•	•	•	● ¹⁾	-	-	_	_	_	125	V L4
Rotati 07 Sealin 08 Mount	Viewed on ng material FKM (fluor ting flange	drive sha		100-4	4 (only	availal	ble for A2	PFM)	-	-	I		1	-	-	- •¹)	-	-	-	V L4 M4
Rotati 07 Sealin 08 Mount	Viewed on ng material FKM (fluor ting flange	drive sha		100-4 125-4 140-4	4 (only 4 (only	availak availak	ble for A2 ble for A2	2FM) 2FM) 2FM)	•	•	-	-	• ¹⁾	-	-	_	_	_	-	V L4 M4 N4
Rotati 07 Sealin 08 Mount	Viewed on ng material FKM (fluor ting flange	drive sha		100-4 125-4 140-4 160-4	4 (only 4 (only 4 (only	availak availak availak	ole for A2 ole for A2 ble for A2	2FM) 2FM) 2FM) 2FM)	• - -	• - -	• - -	•	• ¹⁾ • ³⁾ -	-	- •	- •¹)	-	- - •1)	-	V L4 M4 N4 P4
Rotati 07 Sealin 08 Mount	Viewed on ng material FKM (fluor ting flange	drive sha		100-4 125-4 140-4 160-4 135-1	4 (only 4 (only 4 (only 2 (only	availak availak availak availak	ble for A2 ble for A2 ble for A2 ble for A2	2FM) 2FM) 2FM) 2FM) 2FM)	• - -	-	-	-	•1) •3) •1)	- - - -	- - - -	- •1) •3) -	- - •	- - •1)	-	V L4 M4 N4 P4
Rotati 07 Sealin 08 Mount	Viewed on ng material FKM (fluor ting flange	drive sha		100-4 125-4 140-4 160-4 135-:	4 (only 4 (only 4 (only 2 (only 2 (only	availak availak availak availak availak	ble for A2 ble for A2 ble for A2 ble for A2 ble for A2	2FM) 2FM) 2FM) 2FM) 2FM) 2FE)	• - - -	• •	• - -	- - -	• ¹⁾ • ³⁾ -	- • -	- • -	- •1) •3) - - •1)	- - • -	- - •1) •3) -	-	V L4 M4 N4 P4
Rotati 07 Sealin 08 Mount	Viewed on ng material FKM (fluor ting flange	drive sha		100-4 125-4 140-4 135-3 160-4 190-3	4 (only 4 (only 4 (only 2 (only 2 (only 2 (only	availak availak availak availak availak	ble for A2 ble for A2 ble for A2 ble for A2 ble for A2	2FM) 2FM) 2FM) 2FM) 2FM) 2FE) 2FE)	• •	• •	• •	• •	•1) •3) •1)	- - - -	- - - -	- •1) •3) - -	- • - -	- •1) •3) - - •1)	- • -	V L4 M4 N4 P4 I2 P2
Rotati 07 Sealin 08 Mount 09	Viewed on mg material FKM (fluor ting flange	drive sha		100-4 125-4 140-4 135-3 160-4 190-3	4 (only 4 (only 4 (only 2 (only 2 (only 2 (only	availak availak availak availak availak	ble for A2 ble for A2 ble for A2 ble for A2 ble for A2	2FM) 2FM) 2FM) 2FM) 2FE) 2FE) 2FE) 2FE)	•	•	•	•	•1) •3) •1) •3) •1) •3)	- - - - -	- - - - -	- •1) •3) - - •1) •3) -	- - - - -	- -1) -3) - -1) -1) -3)	- - - -	V L4 M4 N4 P4 I2
Rotati 07 Sealin 08 Mount 09	Viewed on mg material FKM (fluor ting flange ISO 3019-2	oelastome	er)	100-4 125-4 140-4 160-4 135-3 160-3 190-3	4 (only 4 (only 4 (only 2 (only 2 (only 2 (only 2 (only	availak availak availak availak availak availak	ble for A2 ble for A2 ble for A2 ble for A2 ble for A2	2FM) 2FM) 2FM) 2FM) 2FE) 2FE) 2FE) 2FE)	• - - - - - - 023	• 028	• 032	• 037	•1) •3) •1) •3) •1) •3) •1) •3) 045	- - - - -	- - - - - - - - -	- •1) •3) - •1) •3) - •080	- - - - - - - 090	- -1) -3) - -1) -1) -3) 107	- • - - - - 125	V L4 M4 N4 P4 12 P2 Y2 S2
Rotati 07 Sealin 08 Mount 09	Viewed on mg material FKM (fluor ting flange	oelastome	er)	100-4 125-4 140-4 135-1 160-2 190-2 200-2	4 (only 4 (only 4 (only 2 (only 2 (only 2 (only 2 (only 2 (only	availab availab availab availab availab availab availab	ble for A2 ble for A2 ble for A2 ble for A2 ble for A2	2FM) 2FM) 2FM) 2FM) 2FE) 2FE) 2FE) 2FE)	• 023	• 028	• 032	•	•1) •3) - •1) •3) - •1) •3) - •40 - 045	- - - - - - - - 056	- - - - - - - 063	- •1) •3) - - •1) •3) -	- - - - -	- -1) -3) - -1) -1) -3)	- - - - - - 125	V L4 M4 N4 P4 12 P2 Y2 S2
Rotati 07 Sealin 08 Mount 09	Viewed on mg material FKM (fluor ting flange ISO 3019-2	oelastome	er)	100 125 140 160 135 160 200 W25: W30:	4 (only 4 (only 4 (only 2 (only 2 (only 2 (only 2 (only 2 (only x1.25x1 x2x14x8	availab availab availab availab availab availab 8x9g	ble for A2 ble for A2 ble for A2 ble for A2 ble for A2	2FM) 2FM) 2FM) 2FM) 2FE) 2FE) 2FE) 2FE)	• - - - - - - 023	• 028	• 032	• 037	•1) •3) •1) •3) •1) •3) •1) •3) 045	- - - - - - - 056	- - - - - - - 063	- 1) -3)1) -3)1) -3) 080	- - - - - - - 090	- 1) - 3) 1) - 1) - 3) - 107	- - - - - - 125	V L4 M4 N4 P4 I2 P2 Y2 S2 Z5 Z6
Rotati 07 Sealin 08 Mount 09	Viewed on mg material FKM (fluor ting flange ISO 3019-2	oelastome	er)	100-4 125-4 140-4 135-1 160-2 190-2 200-2 W25: W30: W35:	4 (only 4 (only 2 (only 2 (only 2 (only 2 (only 2 (only x1.25x1 x2x14x5 x2x14x5	availak availak availak availak availak availak 8x9g 9g	ble for A2 ble for A2 ble for A2 ble for A2 ble for A2	2FM) 2FM) 2FM) 2FM) 2FE) 2FE) 2FE) 2FE)	•	• 028	• 032	• 037 - •	•1) •3) - •1) •3) - •1) •3) - •4) •40 - •4	- - - - - - - - 056	- - - - - - - 063	- 1) - 3) 1) - 3) 080 02)	- - - - - - - 090		- - - - - 125	V L4 M4 N4 P4 12 P2 Y2 S2 Z5 Z6 Z8
Rotati 07 Sealin 08 Mount 09	Viewed on mg material FKM (fluor ting flange ISO 3019-2	oelastome	er)	100-4 125-4 140-4 135-1 160-2 190-3 200-2 W252 W303 W353	4 (only 4 (only 4 (only 2 (only 2 (only 2 (only 2 (only x1.25x1 x2x14x8 x2x16x8 x2x18x9	availak availak availak availak availak availak 8x9g 9g	ble for A2 ble for A2 ble for A2 ble for A2 ble for A2	2FM) 2FM) 2FM) 2FM) 2FE) 2FE) 2FE) 2FE)	•	• 028	• 032	• 037 - •	•1) •3) - •1) •3) - •1) •3) - •4) - •4) - •4 - •4 - •4 - •4 - •4 -	- - - - - - - 056	- - - - - - 063	- 1) -3)1) -3)1) -3) 080	- - - - - - - 090	- 1) - 3) 1) - 3) - 107	- - - - - - 125	V L4 M4 N4 P4 12 P2 Y2 S2 Z5 Z6 Z8 Z9
Rotati 07 Sealin 08 Mount 09	Viewed on mg material FKM (fluor ting flange ISO 3019-2	oelastome	er)	100 125 140 160 135 160 200 200 W25: W30: W40: W45:	4 (only 4 (only 2 (only 2 (only 2 (only 2 (only 2 (only x1.25x1 x2x14x5 x2x14x5	availak availak availak availak availak availak 8x9g 9g	ble for A2 ble for A2 ble for A2 ble for A2 ble for A2	2FM) 2FM) 2FM) 2FM) 2FE) 2FE) 2FE) 2FE)	•	028 	- - - - - - - 032	• 037	•1) •3) •1) •3) •1) •3) 045	- - - - - - - 056 - - 2)	- - - - - - - 063	- 10 33 - 10 080 - 10 10 10 10 10 10 10 10 10 10 10 10 10	- - - - - - 090	1) - 3) 1) - 3) - 107	- - - - - 125	V L4 M4 N4 P4 12 P2 Y2 S2 Z5 Z6 Z8
Rotati 07 Sealin 08 Mount 09	Viewed on mg material FKM (fluor ting flange ISO 3019-2	drive sha	er)	100-4 125-4 140-4 135-1 160-1 190-1 200-2 W25: W30: W40: W45: Ø25	4 (only 4 (only 4 (only 2 (only 2 (only 2 (only 2 (only x1.25x1 x2x14x8 x2x16x8 x2x18x9	availak availak availak availak availak availak 8x9g 9g	ble for A2 ble for A2 ble for A2 ble for A2 ble for A2	2FM) 2FM) 2FM) 2FM) 2FE) 2FE) 2FE) 2FE)	• 0023	• 028	032 	- - - - - - - 037 - - -	•1) •3) •1) •3) 045	- - - - - - 056 - - 02) - 3) - -	- - - - - - 063 - - -	- 1) - 3) 1) - 3) - 080 2) - 3)	- - - - - - 090 - - -	- -1) -3) - -1) -3) 107 - - - - - - - - - - - - -	- - - - - 125 - - -	V L4 M4 N4 P4 12 P2 Y2 S2 Z5 Z6 Z8 Z9 A1 P5
Rotati 07 Sealin 08 Mount 09	Viewed on mg material FKM (fluor ting flange ISO 3019-2 shaft Splined sh	drive sha	er)	100-4 125-4 140-4 160-1 135-1 160-1 200-1 W255 W300 W355 W400 W455 Ø25 Ø30	4 (only 4 (only 4 (only 2 (only 2 (only 2 (only 2 (only x1.25x1 x2x14x8 x2x16x8 x2x18x9	availak availak availak availak availak availak 8x9g 9g	ble for A2 ble for A2 ble for A2 ble for A2 ble for A2	2FM) 2FM) 2FM) 2FM) 2FE) 2FE) 2FE) 2FE)	- - - - - - 023	028 0	• 032 • •	• 037	•1) •3) •1) •3) •1) •3) 045	- - - - - - - 056 - - 2)		- 1) - 3) 1) - 3) - 080 2) - 3)	- - - - - - 090 - - -	- 107 - 107	- - - - - - - - - - - -	V L4 M4 N4 P4 I2 P2 Y2 S2 Z5 Z6 Z8 Z9 A1 P5 P6
Rotati 07 Sealin 08 Mount 09	Viewed on mg material FKM (fluor ting flange ISO 3019-2 shaft Splined sh	drive sha	er)	100-4 125-4 140-4 135-1 160-1 190-1 200-2 W25: W30: W40: W45: Ø25	4 (only 4 (only 4 (only 2 (only 2 (only 2 (only 2 (only x1.25x1 x2x14x8 x2x16x8 x2x18x9	availak availak availak availak availak availak 8x9g 9g	ble for A2 ble for A2 ble for A2 ble for A2 ble for A2	2FM) 2FM) 2FM) 2FM) 2FE) 2FE) 2FE) 2FE)	• • • • • • • • • • • • •	• 028 • • • • • • • • • • • • • • •	032 032	037 	•1) •3) •1) •3) •1) •3)			- 10	- - - - - - 090 - - - - -	1) - 3) 107	- - - - - - - - - - - - -	V L4 M4 N4 P4 12 P2 Y2 S2 Z5 Z6 Z8 Z9 A1 P5

• = Available • = On request - = Not available

(01	02	03	04		05	06	07	08	8	09	1	0	11	1:	2	13	14			15
A	2F				1	70	N	W	V	, [_	
Work	ing po	rt								023	028	032	037	045	056	063	080	090	107	125	
11			ports A	and B at	bottom					•	•	•	•	•	•	•	•	•	•	•	11
	SAE v	vorking _l	ports A	and B , 1	× at side	and 1×	at botto	om ¹⁾⁶⁾		-	-	_	-	_	•	•	•	_	_	_	12
	SAE v	vorking	ports A	and B at	rear					● ³⁾	•	•	•	● ¹⁾	-	-	-	-	●3)	•	01
	SAE v	vorking _l	ports A	and B at	side, op	posite				•	•	•	•	•	•	•	•	•	•	•	02
	Threa	ded por	ts A and	B , at si	de, oppo	site				•	•	•	•	● ¹⁾	-	_	_	_	-	_	05
				reducin erbalanc		3VD ²⁾³⁾⁷⁾				-	_	_	-	•	•	•	•	•	_	-	07
	Versio	on with p	oressure	reducin	g valves	2)3)8)	1			_	-	-	-	•	•	•	•	•	-	_	09
Valve	· · · · · · · · · · · · · · · · · · ·									023	028	032	037	045	056	063	080	090	107	125	
12	1	ut valve								•	•	•	•	•	•	•	•	•	•	•	0
	1	check va ection ¹⁾	lve, only	for cour	nter-cloc	kwise or	clockw	ise rota	tion-	● ⁴⁾	•4)	•4)	•4)	● ⁵⁾	● ⁵⁾	● ⁵⁾	• ⁵⁾	•	•	•	U
	Integr	rated flu	shing ar	nd Flu	shing flo	w [l/mii	1] 2.6			•	•	•	•	•	•	•	•	•	-	_	С
	1	pressur					4.0			•	•	•	•	•	•	•	•	•	•	•	D
	1	ing flow $p_{ND} - p_{G}$		r			6.0			•	•	•	•	•	•	•	•	•	•	•	E
		= 10 mr					7.4			•	•	•	•	•	•	•	•	•	•	•	F
							8.5			•	•	•	•	•	•	•	•	•	•	•	G
							10.0)		•	•	•	•	•	•	•	•	•	•	•	Н
							11.4	ļ		•	•	•	•	•	•	•	•	•	-	_	ı
							12.5	i		•	•	•	•	•	•	•	•	•	-	_	J
							15			-	-	-	-	_	-	-	-	-	● ³⁾	•	K
							18			_	_	_	_	_	_	_	-	-	● ³⁾	•	L
							21			-	_	_	_	_	_		-	_	● ³⁾	•	М
							27			_		_	-	_	_		-	_	●3)	•	N
							31			_	_	_	-	-	-	_	-	-	● ³⁾	•	0
							37	2 2 2 2 2 2		_	-	_	-	_	-	_	-	-	● ³⁾	•	P
				(withou						_	_	_	-	•	•	•	•	•	-	_	R
				(with pr			ılıty) ²⁾³	(9)		_	-	_	 -	•	•	•	•	•	-	_	S
	Counterbalance valve BVD installed ²⁾³⁾¹⁰⁾¹¹⁾								_	-	_	_	•	•	•	•	•	_	_	W	
-	d sens								-					045				T			
13		ut spee								•	•	•	•	•	•	•	•	•	•	•	0
	<u> </u>	red for I								•	•	•	•	•	•	•	•	•	•	•	Α
		speed se								•	•	•	•	•	•	•	•	•	•	•	В
	<u> </u>			nsor (no						•	•	•	•	•	•	•	•	•	•	•	N
	Speed	d sensor	DSM m	ounted	(not avai	lable for	A2FE)			•	•	•	•	•	•	•	•	•	•	•	М

 $_{\mbox{\scriptsize 1)}}$ Only available for A2FMN, A2FEN (pressure range 300 to 350 bar)

o = On request

- = Not available

= Available

²⁾ Not available for A2FMH, A2FEH (pressure range 450 to 500 bar)

³⁾ Not available for A2FMN, A2FEN (pressure range 300 to 350 bar)

⁴⁾ Only in combination with working ports 11

⁵⁾ Only in combination with working ports 11 or 12

 $_{6)}$ Only in combination with check valve (valve design U)

⁷⁾ Only in combination with mounted counterbalance valve (valve design W)

⁸⁾ Only in combination with pressure relief valve (valve designs R or S)

⁹⁾ Only in combination with working ports 09

¹⁰⁾ Only in combination with working ports 07

¹¹⁾ Type code for counterbalance valve to be quoted separately in accordance with data sheet 95522 (BVD) and 95526 (BVE)

4 **A2FM/A2FE Series 70** | Axial piston fixed motor Type code

(01	02	03	04		05	06	07	80	09	10	11	12	13	14		15
Α	2F				1	70	N	w	V							_	
Speci	al vers	sion															
14	Stand	ard vers	ion														0
	Long-l	life bear	ing ¹²⁾														L
	Specia	al versio	n for sle	w drives	3												J
Stand	lard/sp	ecial ve	ersion														
15	Stand	ard vers	ion														0
	Stand	ard vers	ion with	installa	tion vari	iants, e.g	g. T port	s contra	ry to sta	ndard, c	pen or	closed					Υ
	Specia	al versio	n														S

• = Available • = On request - = Not available

Notices

- ▶ Note the project planning notes on page 48.
- ▶ Please note that not all type code combinations are available although the individual functions are marked as being available.

¹²⁾ Type code version "L" not available in combination with A2FMH/A2FEH since in the case of pressure range "H" the long-life bearing is already included in the standard version (type code designation "0").

Hydraulic fluids

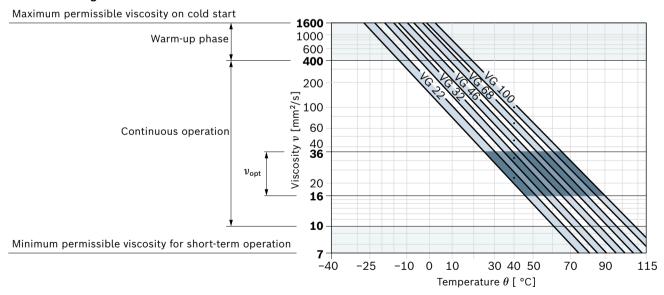
The fixed motor A2FM/A2FE is designed for operation with HLP mineral oil according to DIN 51524.

Application instructions and requirements for hydraulic fluid selection, behavior during operation as well as disposal and environmental protection should be taken from the following data sheets before the start of project planning:

- ▶ 90220: Hydraulic fluids based on mineral oils and related hydrocarbons
- ▶ 90221: Environmentally acceptable hydraulic fluids

Information on the selection of hydraulic fluid

Selection of hydraulic fluid shall make sure that the operating viscosity in the operating temperature range is within the optimum range (v_{opt} ; see selection diagram).


Notice

For operation with HF hydraulic fluids, please contact us.

Viscosity and temperature of hydraulic fluids

	Viscosity	Shaft seal	Temperature ³⁾	Comment
Cold start	$v_{\text{max}} \le 1600 \text{mm}^2/\text{s}$	NBR ²⁾	θ _{St} ≥ -40 °C	$t \le 3$ min, without load ($p \le 50$ bar), $n \le 1000$ rpm
		FKM	θ _{St} ≥ -25 °C	Permissible temperature difference between axial piston unit and hydraulic fluid in the system maximum 25 K
Warm-up phase	$v = 1600 \dots 400 \text{mm}^2/\text{s}$			$t \le 15$ min, $p \le 0.7 \times p_{\text{nom}}$ and $n \le 0.5 \times n_{\text{nom}}$
Continuous	$v = 400 \dots 10 \text{mm}^2/\text{s}^{1)}$	NBR ²⁾	θ ≤ +78°C	measured at port T
operation		FKM	θ ≤ +103°C	
	$v_{\rm opt}$ = 36 16mm ² /s			optimal operating viscosity and efficiency range
Short-term op- eration	$v_{min} = 10 7 \text{mm}^2/\text{s}$	NBR ²⁾	θ ≤ +78°C	$t \le 3 \text{min}, p \le 0.3 \times p_{\text{nom}}, \text{ measured at port } \mathbf{T}$
		FKM	θ ≤ +103°C	

▼ Selection diagram

¹⁾ This corresponds, for example on the VG 46, to a temperature range of +4 C to +85 °C (see selection diagram)

²⁾ Special version, please contact us

³⁾ If the temperature at extreme operating parameters cannot be adhered to, please contact us.

Filtration of the hydraulic fluid

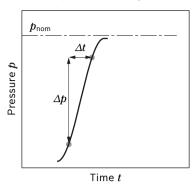
Finer filtration improves the cleanliness level of the hydraulic fluid, which increases the service life of the axial piston unit.

A cleanliness level of at least 20/18/15 is to be maintained according to ISO 4406.

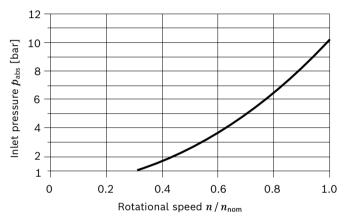
At a hydraulic fluid viscosity of less than 10 mm²/s (e.g. due to high temperatures during short-term operation) at the drain port, a cleanliness level of at least 19/17/14 under ISO 4406 is required.

For example, the viscosity 10 mm²/s at:

- ► HLP 32 a temperature of 73°C
- ► HLP 46 a temperature of 85°C


Flow direction

Rotational direction viewed on drive shaft										
clockwise	counter-clockwise									
A to B	B to A									


Working pressure range

Pressure at working	g port A or B		Definition
Nominal pressure	A2FMN, A2FEN	300 bar	The nominal pressure corresponds to the maximum design pressure.
p_{nom}	A2FMM, A2FEM	400 bar	_
	A2FMH, A2FEH	450 bar	_
Maximum pressure	A2FMN, A2FEN	350 bar	The maximum pressure corresponds to the maximum working pressure during
p_{max}	A2FMM, A2FEM	450 bar	a single operating period. The sum of single operating periods must not exceed
	A2FMH, A2FEH	500 bar	the total operating period.
Maximum single	operating period	10 s	_
Total operating p	period	300 h	_
Minimum pressure - (inlet)	- pump operating mode	see the diagram	To prevent damage to the axial piston motor in pump operating mode (change of the high-pressure side at constant rotational direction, e.g. during brake applications) a minimum pressure has to be ensured at the working port (inlet). The minimum pressure depends on the rotational speed and displacement of the axial piston unit.
Summation pressure	e p _{Su}	700 bar	The summation pressure is the sum of the pressures at the ports for the Working lines (A and B).
Rate of pressure cha	ange $R_{\text{A max}}$		Maximum permissible pressure build-up and reduction speed during a pressure
with integrated p	oressure relief valve	9000 bar/s	change across the entire pressure range.
without pressure	e relief valve	16000 bar/s	_
Case pressure at po	ort T		
Continuous differential pressure $\Delta p_{L/T\ cont}$		2 bar	Maximum averaged differential pressure at the shaft seal (case to ambient pressure)
Pressure peaks $p_{ extsf{L/T}}$	peak	10 bar	t < 0.1 s

▼ Rate of pressure change $R_{A \text{ max}}$

▼ Minimum pressure – pump operating mode (inlet)

This diagram is only valid for the optimum viscosity range of $v_{\rm opt}$ = 36 to 16 mm²/s. If the above-mentioned conditions cannot be ensured, please contact us.

Notice

- Working pressure range applies when using hydraulic fluids based on mineral oils. Please contact us for values for other hydraulic fluids.
- ► In addition to the hydraulic fluid and the temperature, the service life of the shaft seal is influenced by the rotational speed of the axial piston unit and the case pressure.
- ► The service life of the shaft seal decreases with increasing frequency of pressure peaks and increasing mean differential pressure.
- ► The case pressure must be greater than the ambient pressure.

Technical data

A2FMN, A2FEN

Size	NG		28	32	37	45	56	63	80	90	107
Displacement geometric, per revolution	V_{g}	cm ³	28.1	32.0	36.8	44.2	56.6	63.0	81.7	90.5	108.8
Maximum rotational speed ¹⁾	n_{nom}	rpm	4725	4725	4200	4200	3750	3750	3375	3375	3000
	$n_{max}^{2)}$	rpm	5175	5175	4650	4650	4125	4125	3700	3700	3300
Inlet flow	$q_{ m v\;max}$	l/min	133	151	155	186	212	236	276	305	326
Torque ³⁾ at Δp = 300 bar	T	Nm	134	153	176	211	270	301	390	432	519
Rotary stiffness	c_{min}	kNm/ rad	2.20	2.46	4.29	4.84	6.97	8.11	8.47	9.85	10.96
Moment of inertia of the rotary group	$J_{\sf TW}$	kgm²	0.0010	0.0011	0.0012	0.0012	0.0034	0.0035	0.0037	0.0058	0.0061
Case volume	V	ι	0.3	0.3	0.3	0.3	0.6	0.6	0.6	0.65	0.65
Weight approx.	m	kg	10.7	10.7	10.7	10.7	17	17	17	23	23

A2FMM, A2FEM

Size		NG		23	28	32	45	56	63	80	90	107	125
Displacement ge	eometric, per revolution	V_{g}	cm ³	22.9	28.1	32.0	44.9	56.6	63.0	79.8	90.5	106.7	125.0
Maximum rotation	onal speed ¹⁾	n_{nom}	rpm	6300	6300	6300	5000	5000	5000	4500	4500	4000	4000
	<u> </u>			6900	6900	6900	5500	5500	5500	5000	5000	4400	4400
Inlet flow		$q_{ m v\; max}$	l/min	144	177	202	225	283	315	359	407	427	500
Torque ³⁾	at Δp = 400 bar	T	Nm	146	179	204	286	360	401	508	576	679	796
Rotary stiffness		c_{min}	kNm/ rad	1.76	2.20	2.46	4.65	6.97	8.11	9.10	9.85	12.49	13.65
Moment of inert	ia of the rotary group	J_{TW}	kgm ²	0.0010	0.0010	0.0011	0.0033	0.0034	0.0035	0.0056	0.0058	0.0088	0.0091
Case volume		V	ι	0.3	0.3	0.3	0.6	0.6	0.6	0.65	0.65	1.1	1.1
Weight approx.			kg	10.7	10.7	10.7	17	17	17	23	23	32.8	32.8

A2FMH, A2FEH

Size	NG		45	56	63	80	90	107	125			
Displacement ge	ometric, per revolution	V_{g}	cm³	44.9	56.6	63.0	79.8	90.5	106.7	125.0		
Maximum rotatio	nal speed ¹⁾	n_{nom}	rpm	5000	5000	5000	4500	4500	4000	4000		
		$n_{max}^{2)}$	rpm	5500	5500	5500	5000	5000	4400	4400		
Inlet flow	$q_{ m v\; max}$	l/min	225	283	315	359	407	427	500			
Torque ³⁾	at Δp = 450 bar	T	Nm	322	405	451	572	648	764	895		
Rotary stiffness		c_{min}	kNm/ rad	4.65	6.97	8.11	9.10	9.85	12.49	13.65		
Moment of inerti	a of the rotary group	$J_{\sf TW}$	kgm²	0.0033	0.0034	0.0035	0.0056	0.0058	0.0088	0.0091		
Case volume		V	ι	0.6	0.6	0.6	0.65	0.65	1.1	1.1		
Weight approx.			kg	17	17	17	23	23	32.8	32.8		

Speed range

No limit to minimum speed n_{\min} . If uniformity of motion is required, rotational speed n_{\min} must not be less than 50 rpm.

 $[\]scriptstyle{\rm 1)}$ The valid values (observing the maximum permissible inlet flow):

[–] for the optimum viscosity range from ν_{opt} = 36 to 16 mm^2/s

⁻ with hydraulic fluid based on mineral oils

₂₎ Intermittent maximum speed: Overspeed for unload and overhauling processes, t < 5 s and $\Delta p < 150$ bar

 $_{
m 3)}$ Torque without radial force, with radial force see page 9

Permissible radial and axial loading on the drive shafts

A2FMN, A2FEN

Size		NG		Z5/P5	Z6/P6	Z5/P5	Z6/P6	Z6/P6	Z6/P6	Z6/P6	Z8/P8	Z8/P8	Z9/P9	Z9/P9
				28	28	32	32	37	45	56	63	80	90	107
Drive shaft	with splined shaft	Ø	mm	25	30	25	30	30	30	30	35	35	40	40
	with keyed shaft	Ø	mm	25	30	25	30	30	30	30	35	35	40	40
Maximum radial	↓ ^F q ⊢	F _{q max}	kN	4.3	3.6	4.9	4.1	4.7	5.6	7.2	6.9	8.9	8.6	10.4
force ¹⁾ at distance a (from shaft collar)	a	a	mm	16	16	16	16	16	16	18	18	18	20	20
Maximum torque a	at $F_{ m q\ max}$	$T_{q\;max}$	Nm	134	134	153	153	176	211	270	301	390	432	519
Maximum differen	tial pressure at $F_{q\;max}$	$\Delta p_{ m q max}$	bar	300	300	300	300	300	300	300	300	300	300	300
Maximum axial force	—	+ F _{ax max}	N	0	0	0	0	0	0	0	0	0	0	0
at standstill or pres- sure-free operation	$F_{ax} \xrightarrow{+} $	- F _{ax max}	N	500	500	500	500	500	500	800	800	800	1000	1000
Permissible axial forc working pressure	e per bar	+ F _{ax perm} / bar	N/bar	5.2	5.2	5.2	5.2	5.2	5.2	8.7	8.7	8.7	10.6	10.6

A2FMM, A2FEM

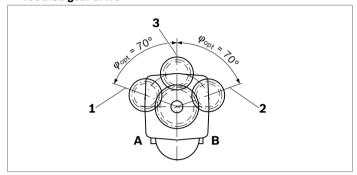
Size		NG		Z5/ P5	Z6/ P6	Z5/ P5	Z6/ P6	Z5/ P5	Z6/ P6	Z6/ P6	Z6/ P6	Z8/ P8	Z8/ P8	Z8/ P8	Z9/ P9	Z9/ P9	Z9/ P9	A1/ B1	A1/ B1
				23	23	28	28	32	32	45	56	56	63	80	80	90	107	107	125
Drive shaft	with splined shaft	Ø	mm	25	30	25	30	25	30	30	30	35	35	35	40	40	40	45	45
Maximum radial	with keyed shaft	Ø	mm	25	30	25	30	25	30	30	30	35	35	35	40	40	40	45	45
	$\downarrow^{F_{q}}$	F _{q max}	kN	4.7	3.9	5.7	4.8	6.5	5.4	7.6	9.6	8.2	9.2	11.6	10.2	11.5	13.6	12.1	14.1
force ¹⁾ at distance a (from shaft collar)	a	a	mm	16	16	16	16	16	16	18	18	18	18	20	20	20	20	20	20
Maximum torque a	t F _{q max}	$T_{ m q\ max}$	Nm	146	146	179	179	204	204	286	360	360	401	508	508	576	679	679	796
Maximum different	tial pressure at $F_{ m q\ max}$	$\Delta p_{\text{q max}}$	bar	400	400	400	400	400	400	400	400	400	400	400	400	400	400	400	400
Maximum axial force	— <u>— — — — — — — — — — — — — — — — —</u>	+ F _{ax max}	N	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
at standstill or pres- sure-free operation	F_{ax}	- F _{ax max}	N	500	500	500	500	500	500	800	800	800	800	1000	1000	1000	1250	1250	1250
Permissible axial force sure	e per bar working pres	+ F _{ax perm} /	N/bar	5.2	5.2	5.2	5.2	5.2	5.2	8.7	8.7	8.7	8.7	10.6	10.6	10.6	12.9	12.9	12.9

A2FMH, A2FEH

Size		NG		Z6/P6	Z8/P8	Z8/P8	Z9/P9	Z9/P9	Z9/P9	A1/B1	A1/B1
				45	56	63	80	90	107	107	125
Drive shaft	with splined shaft	Ø	mm	30	35	35	40	40	40	45	45
	with keyed shaft	Ø	mm	30	35	35	40	40	40	45	45
Maximum radial	↓Fq —	F _{q max}	kN	8.6	9.3	10.3	11.4	13.0	15.3	13.6	15.9
force ¹⁾ at distance a (from shaft collar)	a	a	mm	18	18	18	20	20	20	20	20
Maximum torque a	at $F_{q\;max}$	T _{q max}	Nm	322	405	451	572	648	764	764	895
Maximum differen	tial pressure at $F_{\sf q\;max}$	$\Delta p_{ m q max}$	bar	450	450	450	450	450	450	450	450
Maximum axial force		+ F _{ax max}	N	0	0	0	0	0	0	0	0
at standstill or pressure-free operation	$F_{ax} \overset{+}{\longleftarrow}$	- F _{ax max}	N	800	800	800	1000	1000	1250	1250	1250
Permissible axial force pressure	ce per bar working	+ $F_{ m ax\ perm}/$	N/bar	8.7	8.7	8.7	10.6	10.6	12.9	12.9	12.9

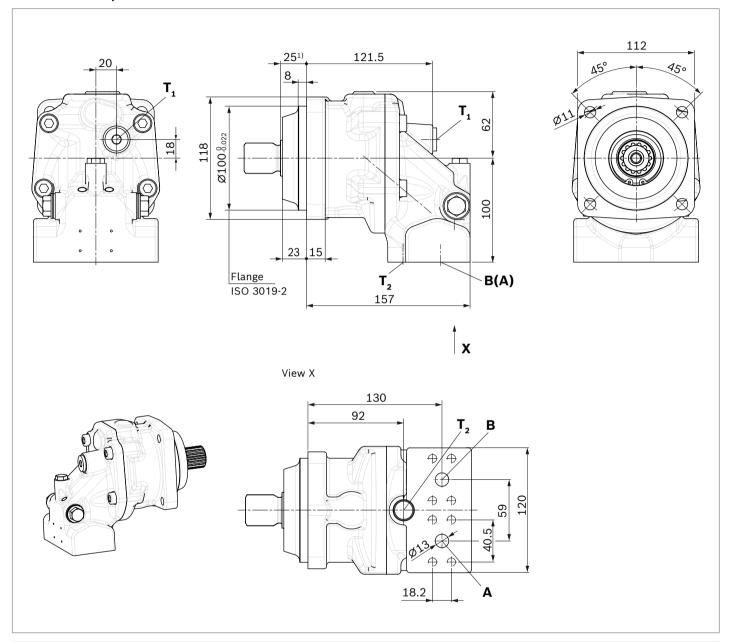
¹⁾ With intermittent operation

Determining	the op	erating characterist	ics	
Inlet flow		$V_{g} \times n$		[l/min]
inter now	q_{\scriptscriptstyleV}	= $1000 \times \eta_{\rm v}$		[l/min]
Rotational		$q_{\rm v} \times 1000 \times \eta_{\rm v}$		[rnm]
speed	n	= V_{g}	- [rpm]	
Torque	Т	$V_{g} \times \Delta p \times \eta_{mh}$		[Nm]
Torque	1	=		[INIII]
Power	P	$2 \pi \times T \times n$	$q_{v} \times \Delta p \times \eta_{t}$	- [kW]
rowei	Ρ	60000	600	- [KVV]
Key				
V_{g}	=	Displacement per	revolution [cm³	3]
Δp	=	Differential pressu	re [bar]	
n	=	Rotational speed [rpm]	
$\eta_{\scriptscriptstyle V}$	=	Volumetric efficien	ıcy	
η_mh	=	Mechanical-hydrau	ılic efficiency	
η_{t}	=	Total efficiency ($\eta_{\rm t}$	$=\eta_{v}\times\eta_{mh}$	


Notices

- ► Theoretical values, without efficiency and tolerances; values rounded
- ▶ Operation above the maximum values or below the minimum values may result in a loss of function, a reduced service life or in the destruction of the axial piston unit. Other permissible limit values, such as speed variation, reduced angular acceleration as a function of the frequency and the permissible angular acceleration at start (lower than the maximum angular acceleration) can be found in data sheet 90261.
- ► The values given are maximum values and do not apply to continuous operation.
- ▶ The permissible axial force in direction $-F_{ax}$ is to be avoided as the service life of the bearing is reduced.
- ► Special requirements apply in the case of belt drives. Please contact us.

Effect of radial force $F_{ m q}$ on bearing service life


By selecting a suitable direction of radial force $F_{\rm q}$, the load on the bearings, caused by the internal rotary group forces can be reduced, thus optimizing the service life of the bearings. Recommended position of mating gear is dependent on the rotational direction. Examples:

▼ Toothed gear drive

- 1 "Counter-clockwise" rotational direction, pressure at port B
- 2 "Clockwise" rotational direction, pressure at port A
- 3 "Alternating" rotational direction

Dimensions A2FM, SAE working ports A and B at bottom (11)

Ports		Standard	Size ²⁾	p _{max} [bar] ³⁾	State ⁶⁾
A, B	Working port	SAE J518	1/2 in	450	0
	Fastening thread A/B	DIN 13	M8 × 1.25; 16 deep		
T ₁	Drain port	DIN 3852 ⁵⁾	M16 × 1.5; 12 deep	3	X ⁴⁾
T ₂	Drain port	DIN 3852 ⁵⁾	M16 × 1.5; 12 deep	3	O ⁴⁾

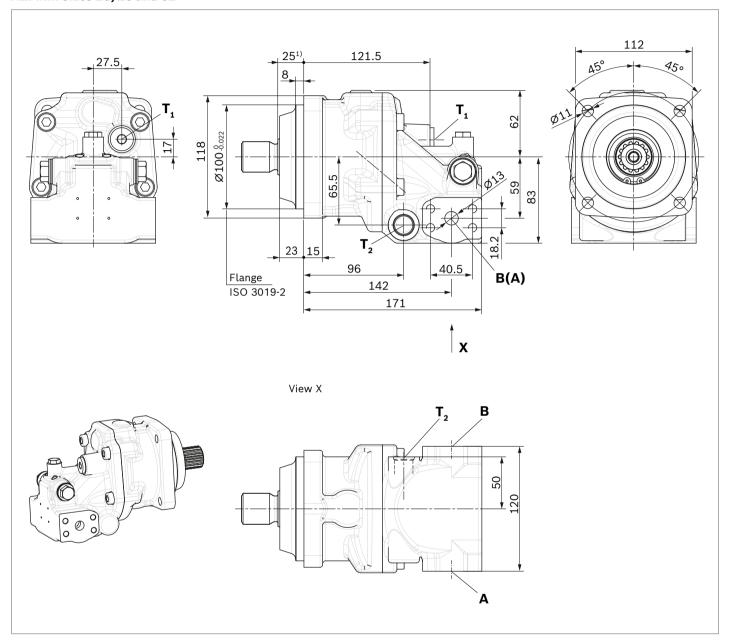
¹⁾ To shaft collar

²⁾ For notes on tightening torques, see the instruction manual.

³⁾ Depending on the application, momentary pressure peaks can occur. Keep this in mind when selecting measuring instruments and fittings.

⁴⁾ Depending on installation position, T_1 or T_2 must be connected (see also installation instructions on page 46).

⁵⁾ The countersink may be deeper than specified in the standard.


⁶⁾ O = Must be connected (condition on delivery: plugged)

X = Plugged (in normal operation)

Dimensions A2FM, SAE working ports A and B at side, opposite (02)

A2FMN sizes 28, 32, 37 and 45 A2FMM sizes 23, 28 and 32

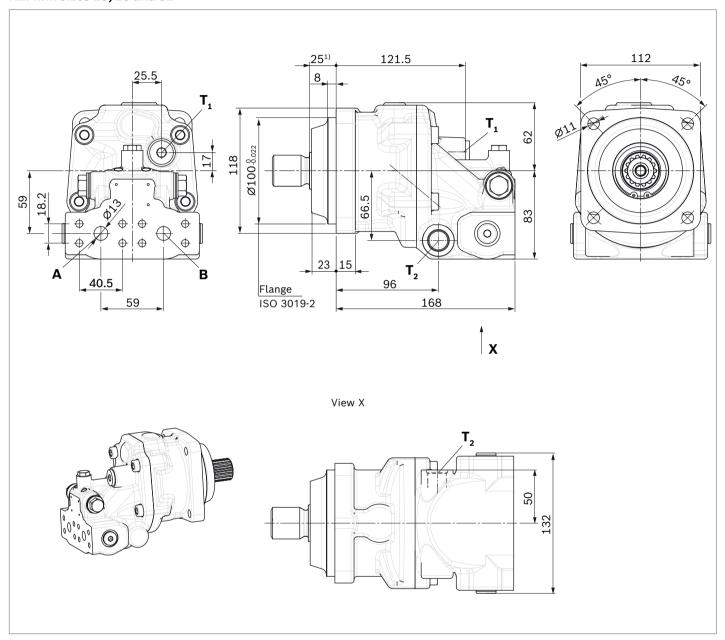
12

Ports		Standard	Size ²⁾	p _{max} [bar] ³⁾	State ⁶⁾
A, B	Working port	SAE J518	1/2 in	450	0
	Fastening thread A/B	DIN 13	M8 × 1.25; 16 deep		
T ₁	Drain port	DIN 3852 ⁵⁾	M16 × 1.5; 12 deep	3	X ⁴⁾
T ₂	Drain port	DIN 3852 ⁵⁾	M16 × 1.5; 12 deep	3	O ⁴⁾

¹⁾ To shaft collar

²⁾ For notes on tightening torques, see the instruction manual.

³⁾ Depending on the application, momentary pressure peaks can occur. Keep this in mind when selecting measuring instruments and fittings.


⁴⁾ Depending on installation position, T_1 or T_2 must be connected (see also installation instructions on page 46).

⁵⁾ The countersink may be deeper than specified in the standard.

⁶⁾ O = Must be connected (condition on delivery: plugged)

X = Plugged (in normal operation)

Dimensions A2FM, SAE working ports A and B at rear (01)

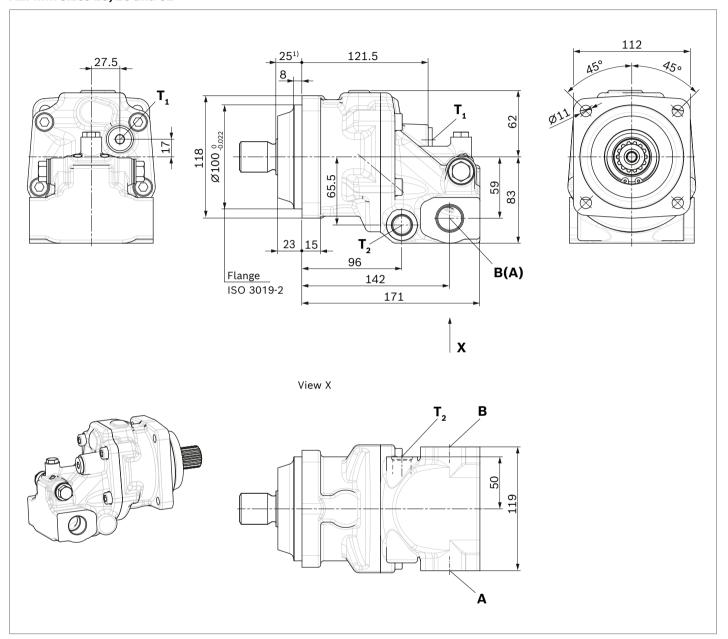
Ports		Standard	Size ²⁾	p _{max} [bar] ³⁾	State ⁶⁾
A, B	Working port	SAE J518	1/2 in	450	0
	Fastening thread A/B	DIN 13	M8 × 1.25; 16 deep		
T ₁	Drain port	DIN 3852 ⁵⁾	M16 × 1.5; 12 deep	3	X ⁴⁾
T ₂	Drain port	DIN 3852 ⁵⁾	M16 × 1.5; 12 deep	3	O ⁴⁾

¹⁾ To shaft collar

²⁾ For notes on tightening torques, see the instruction manual.

³⁾ Depending on the application, momentary pressure peaks can occur. Keep this in mind when selecting measuring instruments and fittings.

⁴⁾ Depending on installation position, T_1 or T_2 must be connected (see also installation instructions on page 46).


⁵⁾ The countersink may be deeper than specified in the standard.

⁶⁾ O = Must be connected (condition on delivery: plugged)
X = Plugged (in normal operation)

Dimensions A2FM, threaded ports A and B at side, opposite (05)

A2FMN sizes 28, 32, 37 and 45 A2FMM sizes 23, 28 and 32

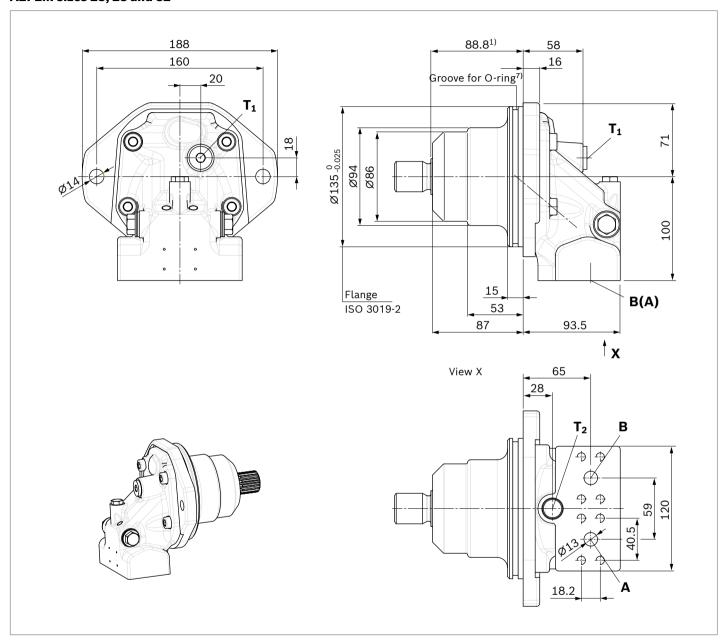
14

Ports		Standard	Size ²⁾	p_{max} [bar] $^{3)}$	State ⁶⁾
A, B	Working port	DIN 3852 ⁵⁾	M27 × 2; 16 deep	450	0
T ₁	Drain port	DIN 3852 ⁵⁾	M16 × 1.5; 12 deep	3	X ⁴⁾
T ₂	Drain port	DIN 3852 ⁵⁾	M16 × 1.5; 12 deep	3	O ⁴⁾

¹⁾ To shaft collar

²⁾ For notes on tightening torques, see the instruction manual.

Depending on the application, momentary pressure peaks can occur. Keep this in mind when selecting measuring instruments and fittings.


⁴⁾ Depending on installation position, T_1 or T_2 must be connected (see also installation instructions on page 46).

⁵⁾ The countersink may be deeper than specified in the standard.

⁶⁾ O = Must be connected (condition on delivery: plugged)

X = Plugged (in normal operation)

Dimensions A2FE, SAE working ports A and B at bottom (11)

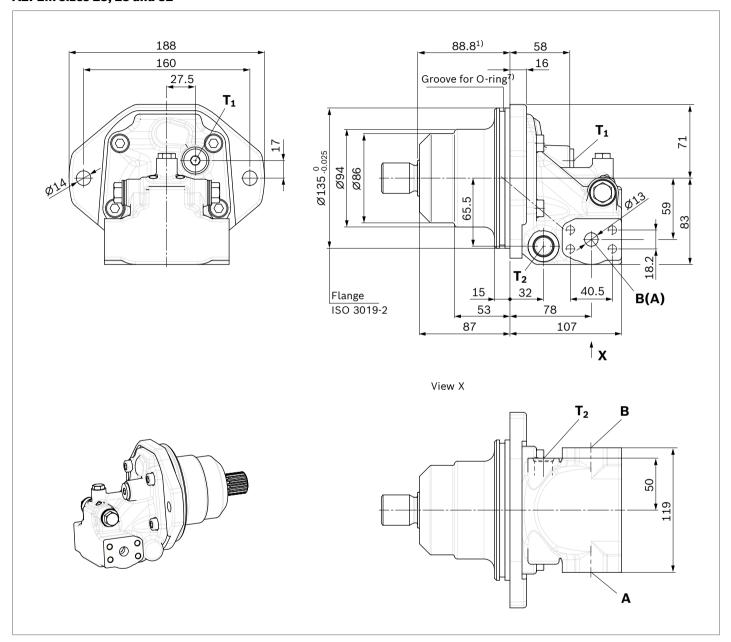
Ports		Standard	Size ²⁾	$p_{\sf max}$ [bar] $^{3)}$	State ⁶⁾
A, B	Working port	SAE J518	1/2 in	450	0
	Fastening thread A/B	DIN 13	M8 × 1.25; 16 deep		
T ₁	Drain port	DIN 3852 ⁵⁾	M16 × 1.5; 12 deep	3	X ⁴⁾
T ₂	Drain port	DIN 3852 ⁵⁾	M16 × 1.5; 12 deep	3	O ⁴⁾

¹⁾ To shaft collar

²⁾ For notes on tightening torques, see the instruction manual.

³⁾ Depending on the application, momentary pressure peaks can occur. Keep this in mind when selecting measuring instruments and fittings.

⁴⁾ Depending on installation position, T_1 or T_2 must be connected (see also installation instructions on page 46).


⁵⁾ The countersink may be deeper than specified in the standard.

⁶⁾ O = Must be connected (condition on delivery: plugged)

X = Plugged (in normal operation)

⁷⁾ O-ring is not included in the scope of delivery.

Dimensions A2FE, SAE working ports A and B at side, opposite (02)

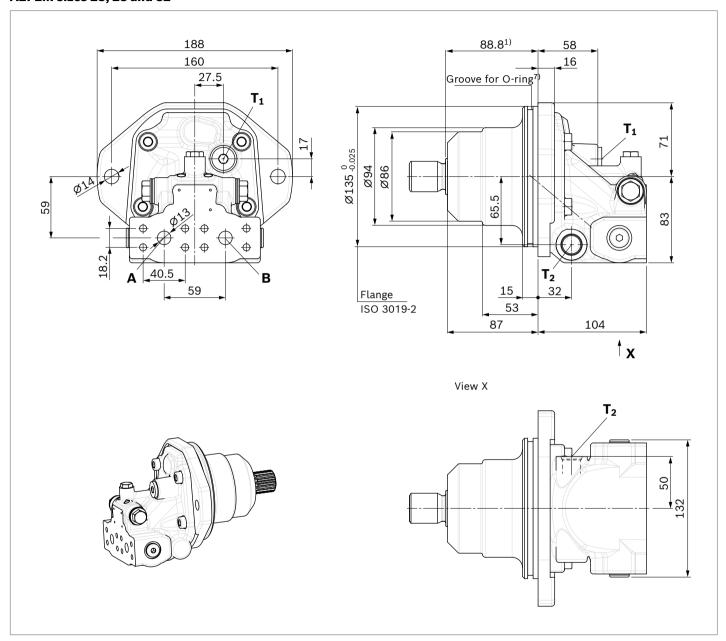
Ports		Standard	Size ²⁾	p _{max} [bar] ³⁾	State ⁶⁾
A, B	Working port Fastening thread A/B	SAE J518 DIN 13	1/2 in M8 × 1.25; 16 deep	450	0
T ₁	Drain port	DIN 3852 ⁵⁾	M16 × 1.5; 12 deep	3	X ⁴⁾
T ₂	Drain port	DIN 3852 ⁵⁾	M16 × 1.5; 12 deep	3	O ⁴⁾

¹⁾ To shaft collar

²⁾ For notes on tightening torques, see the instruction manual.

Depending on the application, momentary pressure peaks can occur. Keep this in mind when selecting measuring instruments and fittings.

⁴⁾ Depending on installation position, T_1 or T_2 must be connected (see also installation instructions on page 46).


⁵⁾ The countersink may be deeper than specified in the standard.

⁶⁾ O = Must be connected (condition on delivery: plugged)

X = Plugged (in normal operation)

⁷⁾ O-ring is not included in the scope of delivery.

Dimensions A2FE, SAE working ports A and B at rear (01)

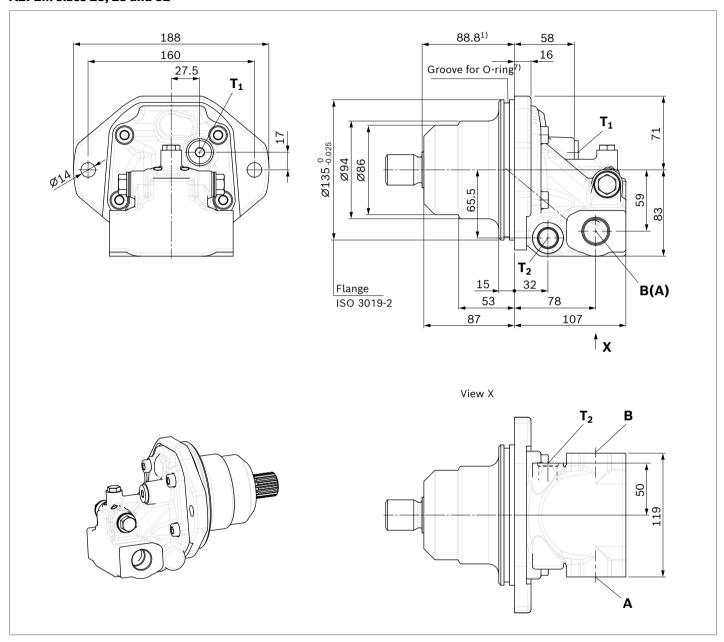
Ports		Standard	Size ²⁾	$p_{\sf max}$ [bar] $^{3)}$	State ⁶⁾
A, B	Working port	SAE J518	1/2 in	450	0
	Fastening thread A/B	DIN 13	M8 × 1.25; 16 deep		
T ₁	Drain port	DIN 3852 ⁵⁾	M16 × 1.5; 12 deep	3	X ⁴⁾
T ₂	Drain port	DIN 3852 ⁵⁾	M16 × 1.5; 12 deep	3	O ⁴⁾

¹⁾ To shaft collar

²⁾ For notes on tightening torques, see the instruction manual.

³⁾ Depending on the application, momentary pressure peaks can occur. Keep this in mind when selecting measuring instruments and fittings.

⁴⁾ Depending on installation position, T₁ or T₂ must be connected (see also installation instructions on page 46).


⁵⁾ The countersink may be deeper than specified in the standard.

⁶⁾ O = Must be connected (condition on delivery: plugged)

X = Plugged (in normal operation)

⁷⁾ O-ring is not included in the scope of delivery.

Dimensions A2FE, threaded ports A and B at side, opposite (05)

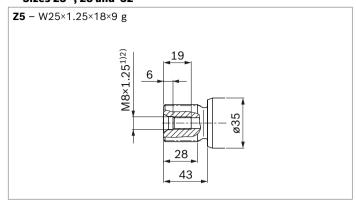
Ports		Standard	Size ²⁾	p _{max} [bar] ³⁾	State ⁶⁾
A, B	Working port	DIN 3852 ⁵⁾	M27 × 2; 16 deep	450	0
T ₁	Drain port	DIN 3852 ⁵⁾	M16 × 1.5; 12 deep	3	X ⁴⁾
T ₂	Drain port	DIN 3852 ⁵⁾	M16 × 1.5; 12 deep	3	O ⁴⁾

¹⁾ To shaft collar

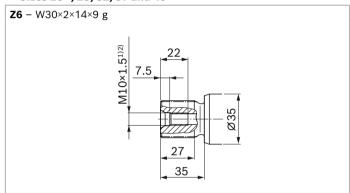
²⁾ For notes on tightening torques, see the instruction manual.

Depending on the application, momentary pressure peaks can occur. Keep this in mind when selecting measuring instruments and fittings.

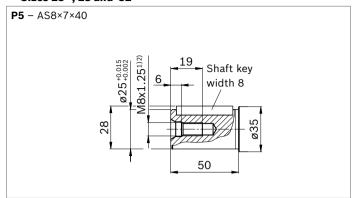
⁴⁾ Depending on installation position, T_1 or T_2 must be connected (see also installation instructions on page 46).

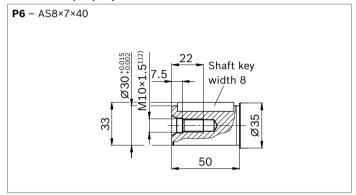

⁵⁾ The countersink may be deeper than specified in the standard.

⁶⁾ O = Must be connected (condition on delivery: plugged)


X = Plugged (in normal operation)

⁷⁾ O-ring is not included in the scope of delivery.

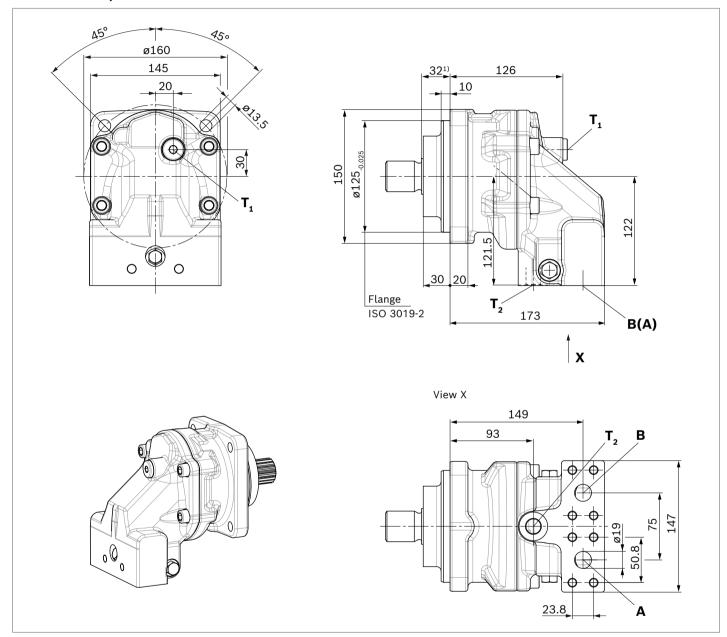

▼ Splined shaft DIN 5480, Sizes 23³⁾, 28 and 32


▼ Splined shaft DIN 5480, Sizes 23³, 28, 32, 37 and 45⁴)

▼ Parallel keyed shaft DIN 6885, Sizes 23³⁾, 28 and 32

▼ Parallel keyed shaft DIN 6885, Sizes 23³⁾, 28, 32, 37 and 45⁴⁾

¹⁾ Center bore according to DIN 332 (thread according to DIN 13)

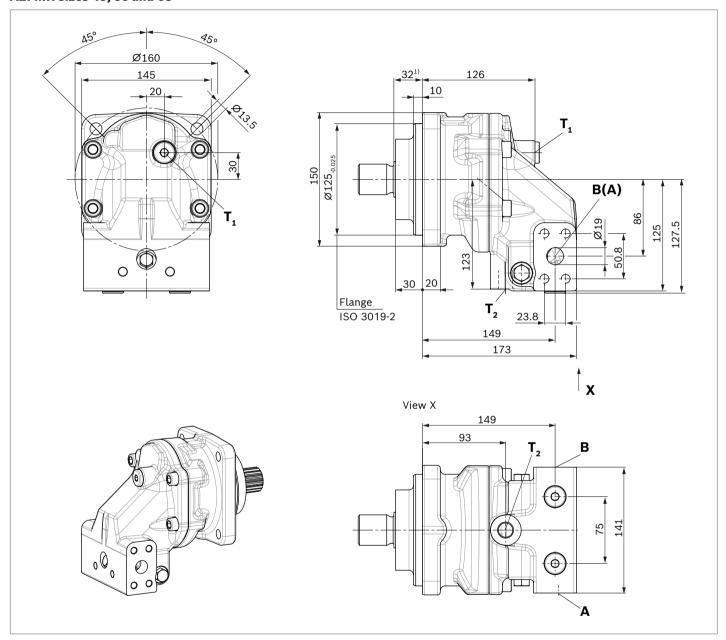

²⁾ For maximum tightening torques, see instruction manual.

³⁾ Not available for A2FMN, A2FEN (pressure range 300 to 350 bar)

⁴⁾ Only available for A2FMN, A2FEN (pressure range 300 to 350 bar)

Dimensions A2FM, SAE working ports A and B at bottom (11)

A2FMN sizes 56, 63 and 80 A2FMM sizes 45, 56 and 63 A2FMH sizes 45, 56 and 63

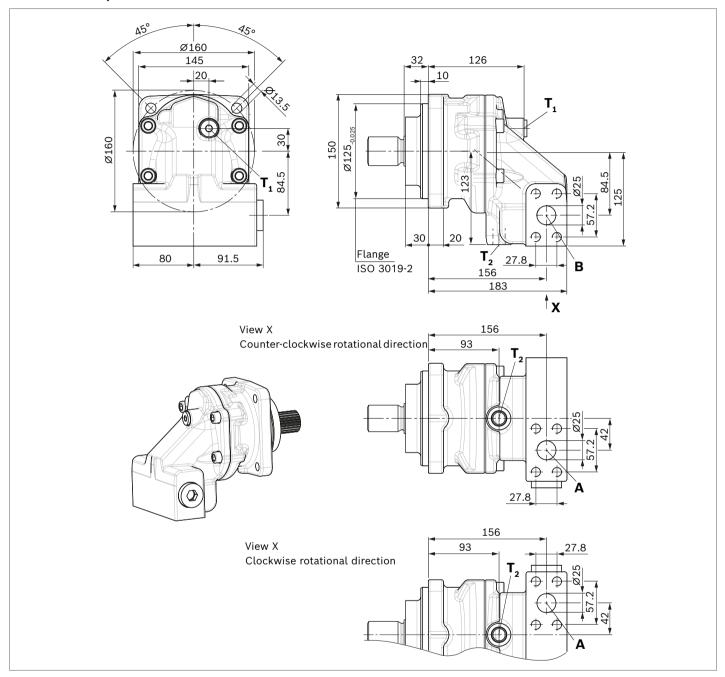


Ports		Standard	Size ²⁾	p _{max} [bar] ³⁾	State ⁶⁾
A, B	Working port	SAE J518	3/4 in	500	0
	Fastening thread A/B	DIN 13	M10 × 1.5; 17 deep		
T ₁	Drain port	DIN 3852 ⁵⁾	M18 × 1.5; 12 deep	3	X ⁴⁾
T ₂	Drain port	DIN 3852 ⁵⁾	M18 × 1.5; 12 deep	3	O ⁴⁾

- 1) To shaft collar
- 2) For notes on tightening torques, see the instruction manual.
- Depending on the application, momentary pressure peaks can occur. Keep this in mind when selecting measuring instruments and fittings.
- 4) Depending on installation position, T_1 or T_2 must be connected (see also installation instructions on page 46).
- 5) The countersink may be deeper than specified in the standard.
- 6) O = Must be connected (condition on delivery: plugged)
 - X = Plugged (in normal operation)

Dimensions A2FM, SAE working ports A and B at side, opposite (02)

A2FMN sizes 56, 63 and 80 A2FMM sizes 45, 56 and 63 A2FMH sizes 45, 56 and 63

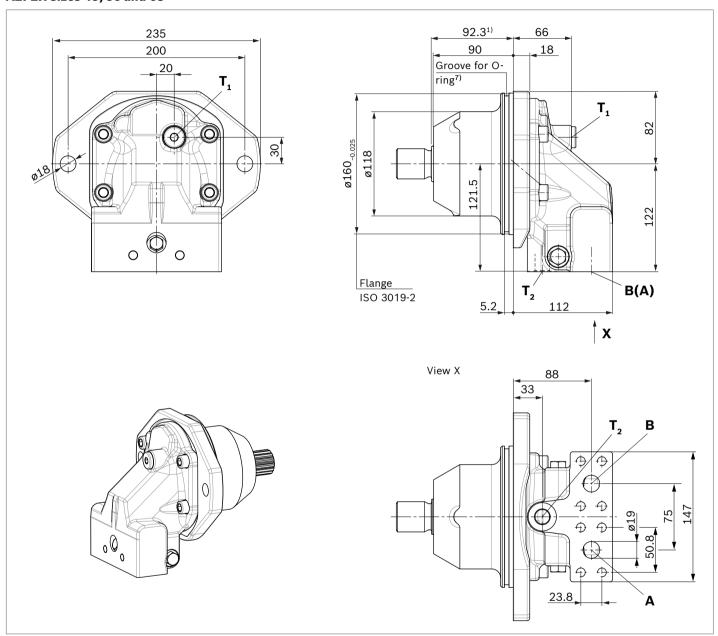

Ports		Standard	Size ²⁾	p _{max} [bar] ³⁾	State ⁶⁾
A, B	Working port Fastening thread A/B	SAE J518 DIN 13	3/4 in M10 × 1.5; 17 deep	500	0
T ₁	Drain port	DIN 3852 ⁵⁾	M18 × 1.5; 12 deep	3	X ⁴⁾
T ₂	Drain port	DIN 3852 ⁵⁾	M18 × 1.5; 12 deep	3	O ⁴⁾

- 1) To shaft collar
- 2) For notes on tightening torques, see the instruction manual.
- $_{3)}$ Depending on the application, momentary pressure peaks can occur. Keep this in mind when selecting measuring instruments and fittings.
- 4) Depending on installation position, T_1 or T_2 must be connected (see also installation instructions on page 46).
- 5) The countersink may be deeper than specified in the standard.
- 6) O = Must be connected (condition on delivery: plugged)
 - X = Plugged (in normal operation)

22

Dimensions A2FM, SAE working ports, $1 \times \text{at side and } 1 \times \text{at bottom}^{7(8)}$ (12)

A2FMN sizes 56, 63 and 80

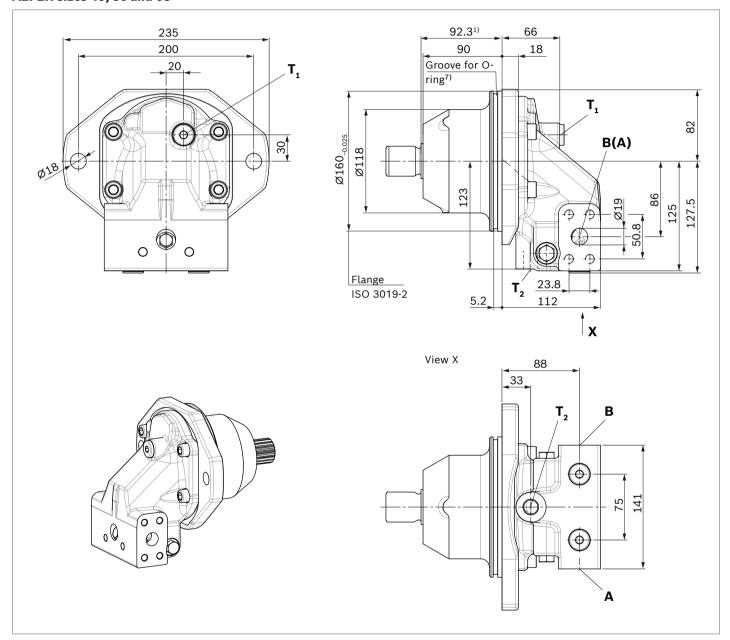


Ports		Standard	Size ²⁾	p _{max} [bar] ³⁾	State ⁶⁾
A, B	Working port	SAE J518	1 in	350	0
	Fastening thread A/B	DIN 13	M12 × 1.75; 17 deep		
T ₁	Drain port	DIN 3852 ⁵⁾	M18 × 1.5; 12 deep	3	X ⁴⁾
T ₂	Drain port	DIN 3852 ⁵⁾	M18 × 1.5; 12 deep	3	O ⁴⁾

- 1) To shaft collar
- 2) For notes on tightening torques, see the instruction manual.
- 3) Depending on the application, momentary pressure peaks can occur. Keep this in mind when selecting measuring instruments and fittings.
- 4) Depending on installation position, T_1 or T_2 must be connected (see also installation instructions on page 46).
- 5) The countersink may be deeper than specified in the standard.
- 6) O = Must be connected (condition on delivery: plugged)
 - X = Plugged (in normal operation)
- 7) Only available for A2FMN, A2FEN (pressure range 300 to 350 bar)
- 8) Only in combination with check valve (valve design U)

Dimensions A2FE, SAE working ports A and B at bottom (11)

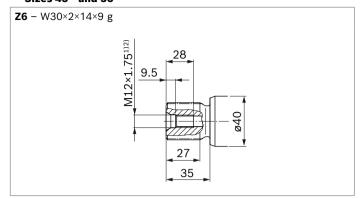
A2FEM sizes 56, 63 and 80 A2FEM sizes 45, 56 and 63 A2FEH sizes 45, 56 and 63

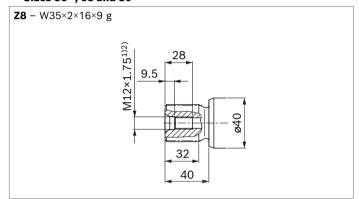


Ports		Standard	Size ²⁾	p _{max} [bar] ³⁾	State ⁶⁾
A, B	Working port Fastening thread A/B	SAE J518 DIN 13	3/4 in M10 × 1.5; 17 deep	500	0
T ₁	Drain port	DIN 3852 ⁵⁾	M18 × 1.5; 12 deep	3	X ⁴⁾
T ₂	Drain port	DIN 3852 ⁵⁾	M18 × 1.5; 12 deep	3	O ⁴⁾

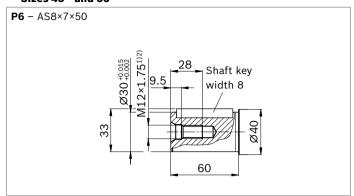
- 1) To shaft collar
- 2) For notes on tightening torques, see the instruction manual.
- 3) Depending on the application, momentary pressure peaks can occur. Keep this in mind when selecting measuring instruments and fittings.
- 4) Depending on installation position, T_1 or T_2 must be connected (see also installation instructions on page 46).
- 5) The countersink may be deeper than specified in the standard.
- 6) O = Must be connected (condition on delivery: plugged)
- X = Plugged (in normal operation)
- 7) O-ring is not included in the scope of delivery.

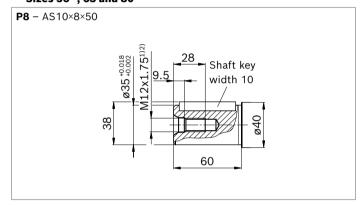
Dimensions A2FE, SAE working ports at side, opposite (02)


A2FEM sizes 56, 63 and 80 A2FEM sizes 45, 56 and 63 A2FEH sizes 45, 56 and 63


Ports		Standard	Size ²⁾	p_{max} [bar] ³⁾	State ⁶⁾
A, B	Working port	SAE J518	3/4 in	500	0
	Fastening thread A/B	DIN 13	M10 × 1.5; 17 deep		
T ₁	Drain port	DIN 3852 ⁵⁾	M18 × 1.5; 12 deep	3	X ⁴⁾
T ₂	Drain port	DIN 3852 ⁵⁾	M18 × 1.5; 12 deep	3	O ⁴⁾

- 1) To shaft collar
- 2) For notes on tightening torques, see the instruction manual.
- Depending on the application, momentary pressure peaks can occur. Keep this in mind when selecting measuring instruments and fittings.
- 4) Depending on installation position, T₁ or T₂ must be connected (see also installation instructions on page 46).
- 5) The countersink may be deeper than specified in the standard.
- 6) O = Must be connected (condition on delivery: plugged)
 - X = Plugged (in normal operation)
- 7) O-ring is not included in the scope of delivery.


▼ Splined shaft DIN 5480, Sizes 45⁴⁾ and 56³⁾

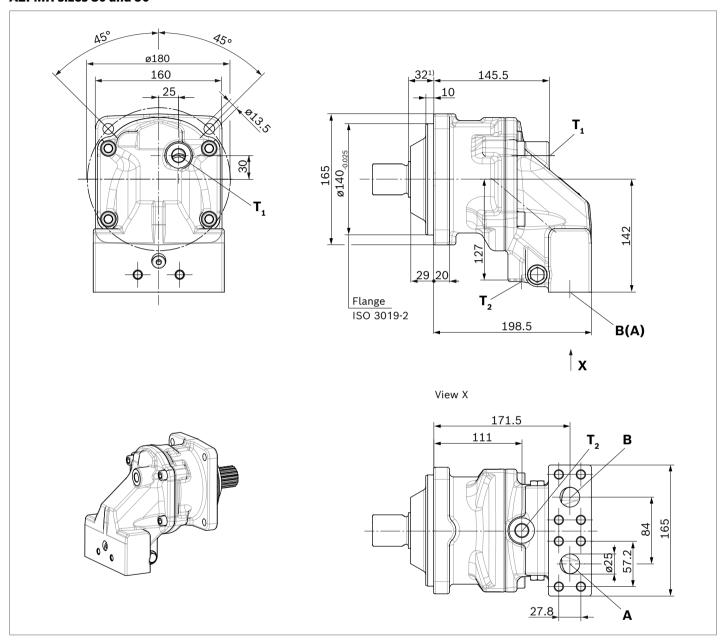

▼ Splined shaft DIN 5480, Sizes 56⁴⁾, 63 and 80⁵⁾

▼ Parallel keyed shaft DIN 6885, Sizes 45⁴⁾ and 56³⁾

▼ Parallel keyed shaft DIN 6885, Sizes 56⁴⁾, 63 and 80⁵⁾

¹⁾ Center bore according to DIN 332 (thread according to DIN 13)

²⁾ For notes on tightening torques, see the instruction manual

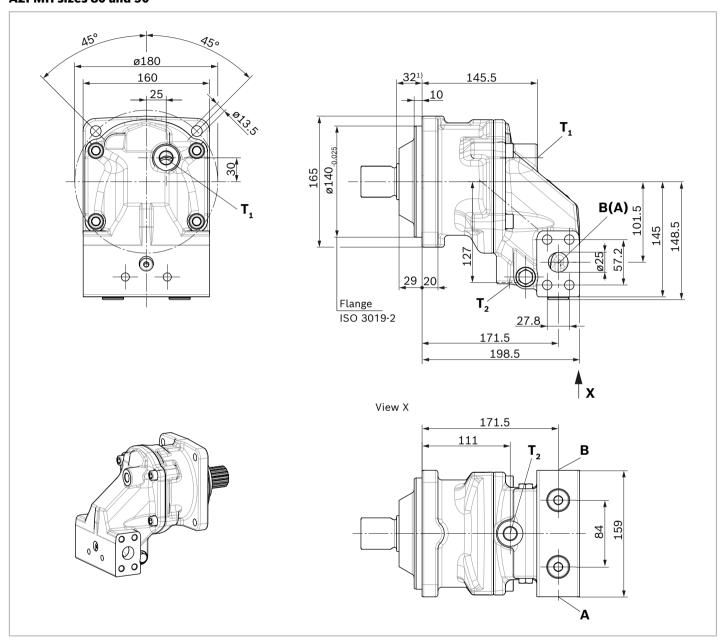

³⁾ Not available for A2FMH, A2FEH (pressure range 450 to 500 bar)

⁴⁾ Not available for A2FMN, A2FEN (pressure range 300 to 350 bar)

⁵⁾ Only available for A2FMN, A2FEN (pressure range 300 to 350 bar)

Dimensions A2FM, SAE working ports at bottom (11)

A2FMN sizes 90 and 107 A2FMM sizes 80 and 90 A2FMH sizes 80 and 90

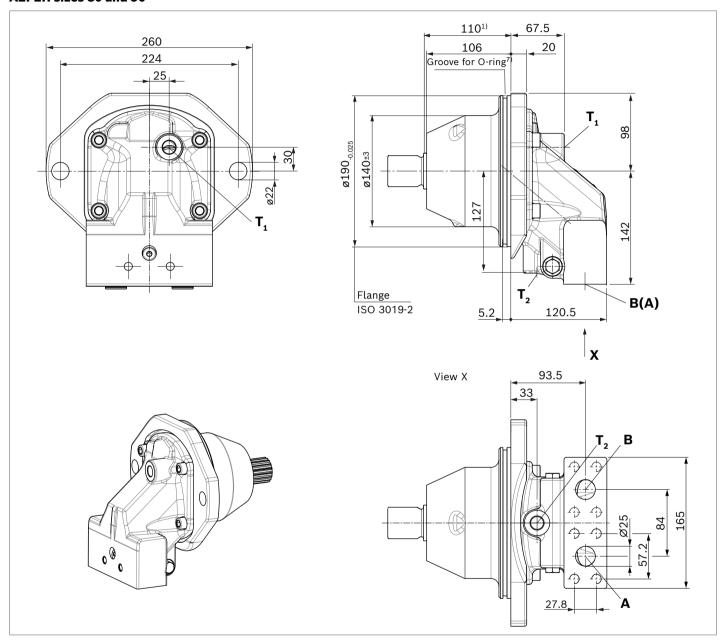


Ports		Standard	Size ²⁾	p _{max} [bar] ³⁾	State ⁶⁾
A, B	Working port	SAE J518	1 in	500	0
	Fastening thread A/B	DIN 13	M12 × 1.75; 17 deep		
T ₁	Drain port	DIN 3852 ⁵⁾	M18 × 1.5; 12 deep	3	X ⁴⁾
T ₂	Drain port	DIN 3852 ⁵⁾	M18 × 1.5; 12 deep	3	O ⁴⁾

- 1) To shaft collar
- 2) For notes on tightening torques, see the instruction manual.
- Depending on the application, momentary pressure peaks can occur. Keep this in mind when selecting measuring instruments and fittings.
- 4) Depending on installation position, T_1 or T_2 must be connected (see also installation instructions on page 46).
- 5) The countersink may be deeper than specified in the standard.
- 6) O = Must be connected (condition on delivery: plugged)
 - X = Plugged (in normal operation)

Dimensions A2FM, SAE working ports at side, opposite (02)

A2FMN sizes 90 and 107 A2FMM sizes 80 and 90 A2FMH sizes 80 and 90

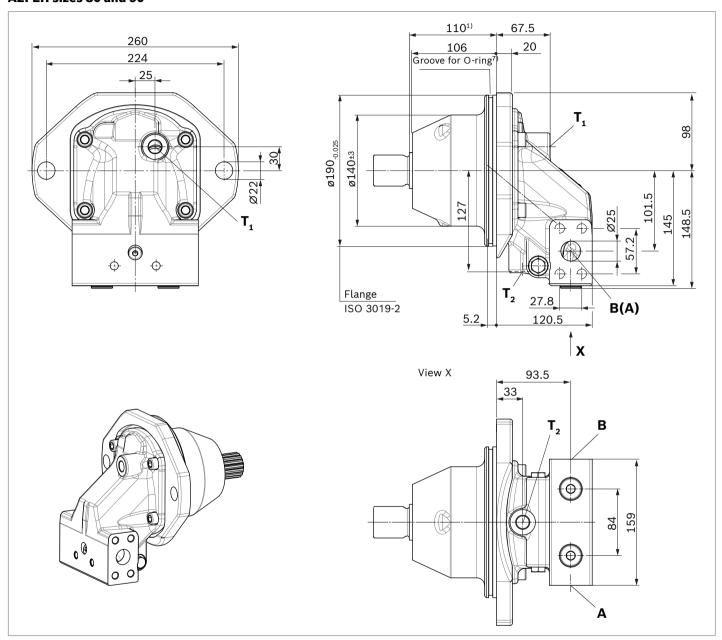


Ports		Standard	Size ²⁾	p _{max} [bar] ³⁾	State ⁶⁾
A, B	Working port	SAE J518	1 in	500	0
	Fastening thread A/B	DIN 13	M12 × 1.75; 17 deep		
T ₁	Drain port	DIN 3852 ⁵⁾	M18 × 1.5; 12 deep	3	X ⁴⁾
T ₂	Drain port	DIN 3852 ⁵⁾	M18 × 1.5; 12 deep	3	O ⁴⁾

- 1) To shaft collar
- 2) For notes on tightening torques, see the instruction manual.
- 3) Depending on the application, momentary pressure peaks can occur. Keep this in mind when selecting measuring instruments and fittings.
- $_{\rm 4)}$ Depending on installation position, T_1 or T_2 must be connected (see also installation instructions on page 46).
- 5) The countersink may be deeper than specified in the standard.
- 6) O = Must be connected (condition on delivery: plugged)
 - X = Plugged (in normal operation)

Dimensions A2FE, SAE working ports at bottom (11)

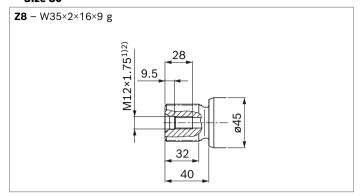
A2FEN sizes 90 and 107 A2FEM sizes 80 and 90 A2FEH sizes 80 and 90

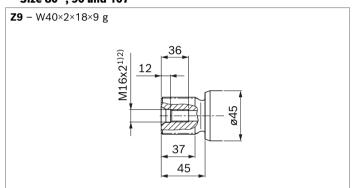


Ports		Standard	Size ²⁾	p _{max} [bar] ³⁾	State ⁶⁾
A, B	Working port	SAE J518	1 in	500	0
	Fastening thread A/B	DIN 13	M12 × 1.75; 17 deep		
T ₁	Drain port	DIN 3852 ⁵⁾	M18 × 1.5; 12 deep	3	X ⁴⁾
T ₂	Drain port	DIN 3852 ⁵⁾	M18 × 1.5; 12 deep	3	O ⁴⁾

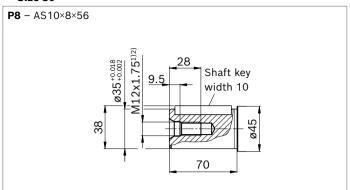
- 1) To shaft collar
- 2) For notes on tightening torques, see the instruction manual.
- Depending on the application, momentary pressure peaks can occur. Keep this in mind when selecting measuring instruments and fittings.
- 4) Depending on installation position, T_1 or T_2 must be connected (see also installation instructions on page 46).
- 5) The countersink may be deeper than specified in the standard.
- 6) O = Must be connected (condition on delivery: plugged)
 - X = Plugged (in normal operation)
- 7) O-ring is not included in the scope of delivery.

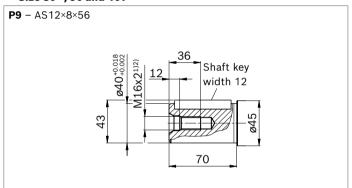
Dimensions A2FE, SAE working ports at side, opposite (02)


A2FEN sizes 90 and 107 A2FEM sizes 80 and 90 A2FEH sizes 80 and 90


Ports		Standard	Size ²⁾	p _{max} [bar] ³⁾	State ⁶⁾
A, B	Working port	SAE J518	1 in	500	0
	Fastening thread A/B	DIN 13	M12 × 1.75; 17 deep		
T ₁	Drain port	DIN 3852 ⁵⁾	M18 × 1.5; 12 deep	3	X ⁴⁾
T ₂	Drain port	DIN 3852 ⁵⁾	M18 × 1.5; 12 deep	3	O ⁴⁾

- 1) To shaft collar
- 2) For notes on tightening torques, see the instruction manual.
- 3) Depending on the application, momentary pressure peaks can occur. Keep this in mind when selecting measuring instruments and fittings.
- 4) Depending on installation position, T₁ or T₂ must be connected (see also installation instructions on page 46).
- 5) The countersink may be deeper than specified in the standard.
- 6) O = Must be connected (condition on delivery: plugged)
 - X = Plugged (in normal operation)
- 7) O-ring is not included in the scope of delivery.


▼ Splined shaft DIN 5480, Size 80³⁾⁴⁾

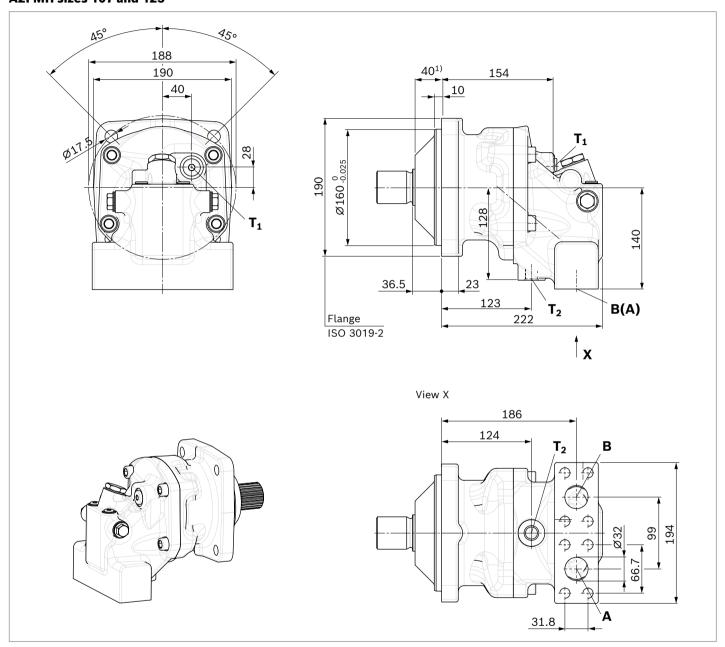

▼ Splined shaft DIN 5480, Size 80⁴⁾, 90 and 107⁵⁾

▼ Parallel keyed shaft DIN 6885, Size 80³⁾⁴⁾

▼ Parallel keyed shaft DIN 6885, Size 80⁴⁾, 90 and 107⁵⁾

¹⁾ Center bore according to DIN 332 (thread according to DIN 13)

²⁾ For notes on tightening torques, see the instruction manual


³⁾ Not available for A2FMH, A2FEH (pressure range 450 to 500 bar)

 $^{^{4)}}$ Not available for A2FMN, A2FEN (pressure range 300 to 350 bar)

⁵⁾ Only available for A2FMN, A2FEN (pressure range 300 to 350 bar)

Dimensions A2FM, SAE working ports at bottom (11)

A2FMM sizes 107 and 125 A2FMH sizes 107 and 125

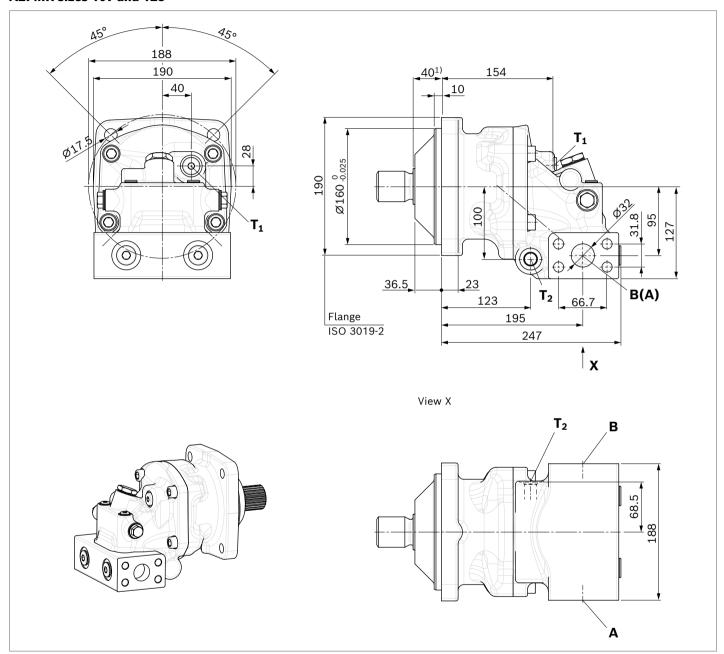
Ports		Standard	Size ²⁾	p _{max} [bar] ³⁾	State ⁶⁾
A, B	Working port Fastening thread A/B	SAE J518 DIN 13	1 1/4 in M14 × 2; 23 deep	500	0
T ₁	Drain port	DIN 3852 ⁵⁾	M18 × 1.5; 12 deep	3	X ⁴⁾
T ₂	Drain port	DIN 3852 ⁵⁾	M18 × 1.5; 12 deep	3	O ⁴⁾

¹⁾ To shaft collar

²⁾ For notes on tightening torques, see the instruction manual.

³⁾ Depending on the application, momentary pressure peaks can occur. Keep this in mind when selecting measuring instruments and fittings.

⁴⁾ Depending on installation position, T₁ or T₂ must be connected (see also installation instructions on page 46).

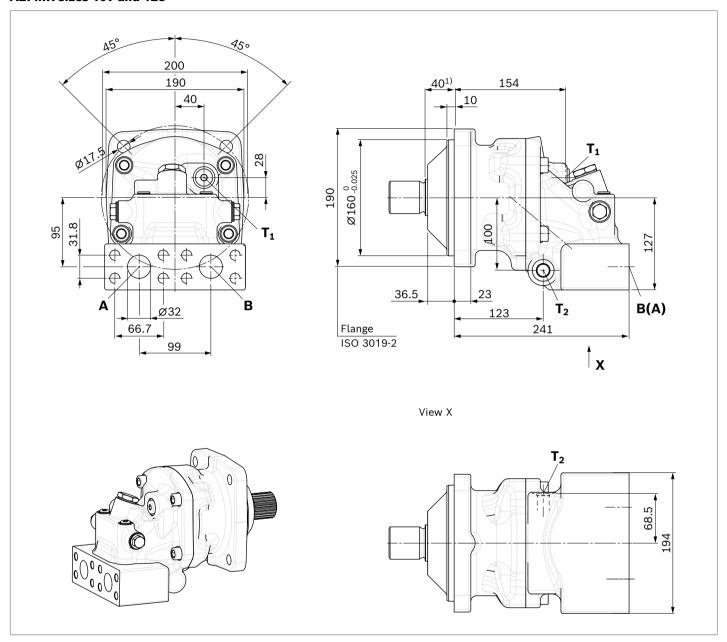

⁵⁾ The countersink may be deeper than specified in the standard.

⁶⁾ O = Must be connected (condition on delivery: plugged)

X = Plugged (in normal operation)

Dimensions A2FM, SAE working ports at side, opposite (02)

A2FMM sizes 107 and 125 A2FMH sizes 107 and 125



Ports		Standard	Size ²⁾	p _{max} [bar] ³⁾	State ⁶⁾
A, B	Working port	SAE J518	1 1/4 in	500	0
	Fastening thread A/B	DIN 13	M14 × 2; 23 deep		
T ₁	Drain port	DIN 3852 ⁵⁾	M18 × 1.5; 12 deep	3	X ⁴⁾
T ₂	Drain port	DIN 3852 ⁵⁾	M18 × 1.5; 12 deep	3	O ⁴⁾

- 1) To shaft collar
- 2) For notes on tightening torques, see the instruction manual.
- Depending on the application, momentary pressure peaks can occur. Keep this in mind when selecting measuring instruments and fittings.
- 4) Depending on installation position, T_1 or T_2 must be connected (see also installation instructions on page 46).
- 5) The countersink may be deeper than specified in the standard.
- 6) O = Must be connected (condition on delivery: plugged)
 - X = Plugged (in normal operation)

Dimensions A2FM, SAE working ports at rear (01)

A2FMM sizes 107 and 125 A2FMH sizes 107 and 125

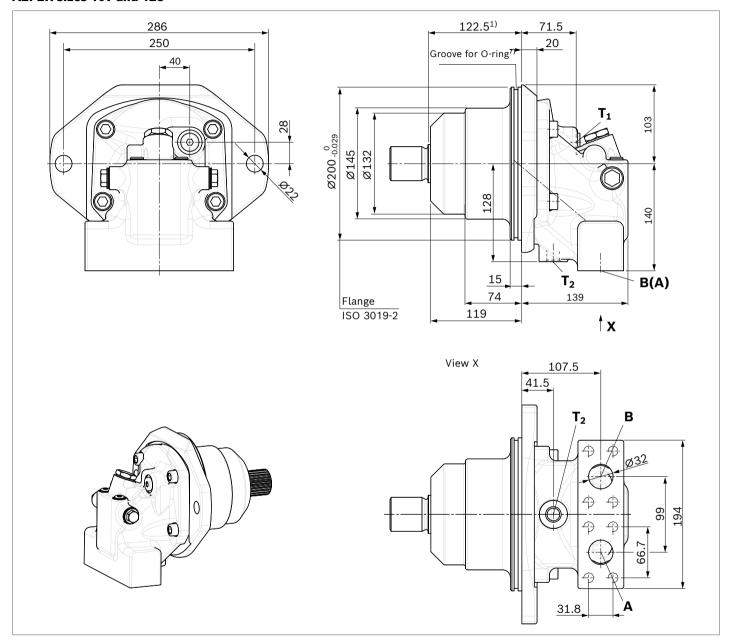
Ports		Standard	Size ²⁾	p _{max} [bar] ³⁾	State ⁶⁾
A, B	Working port	SAE J518	1 1/4 in	500	0
	Fastening thread A/B	DIN 13	M14 × 2; 23 deep		
T ₁	Drain port	DIN 3852 ⁵⁾	M18 × 1.5; 12 deep	3	X ⁴⁾
T ₂	Drain port	DIN 3852 ⁵⁾	M18 × 1.5; 12 deep	3	O ⁴⁾

¹⁾ To shaft collar

²⁾ For notes on tightening torques, see the instruction manual.

³⁾ Depending on the application, momentary pressure peaks can occur. Keep this in mind when selecting measuring instruments and fittings.

⁴⁾ Depending on installation position, T_1 or T_2 must be connected (see also installation instructions on page 46).


⁵⁾ The countersink may be deeper than specified in the standard.

⁶⁾ O = Must be connected (condition on delivery: plugged)

X = Plugged (in normal operation)

Dimensions A2FM, SAE working ports at bottom (11)

A2FEM sizes 107 and 125 A2FEH sizes 107 and 125

Ports		Standard	Size ²⁾	p _{max} [bar] ³⁾	State ⁶⁾
A, B	Working port	SAE J518	1 1/4 in	500	0
	Fastening thread A/B	DIN 13	M14 × 2; 23 deep		
T ₁	Drain port	DIN 3852 ⁵⁾	M18 × 1.5; 12 deep	3	X ⁴⁾
T ₂	Drain port	DIN 3852 ⁵⁾	M18 × 1.5; 12 deep	3	O ⁴⁾

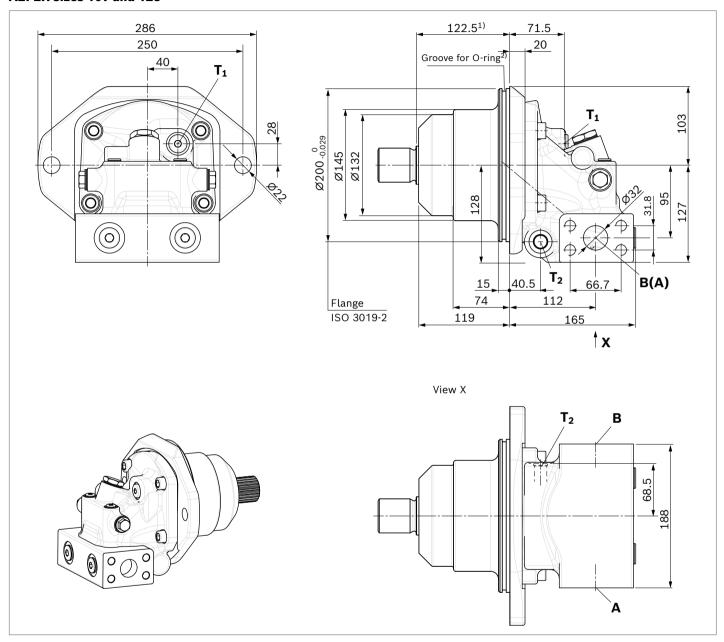
¹⁾ To shaft collar

²⁾ For notes on tightening torques, see the instruction manual.

Depending on the application, momentary pressure peaks can occur. Keep this in mind when selecting measuring instruments and fittings.

⁴⁾ Depending on installation position, T_1 or T_2 must be connected (see also installation instructions on page 46).

⁵⁾ The countersink may be deeper than specified in the standard.


⁶⁾ O = Must be connected (condition on delivery: plugged)

X = Plugged (in normal operation)

⁷⁾ O-ring is not included in the scope of delivery.

Dimensions A2FE, SAE working ports at side, opposite (02)

A2FEM sizes 107 and 125 A2FEH sizes 107 and 125

Ports		Standard	Size ²⁾	p _{max} [bar] ³⁾	State ⁶⁾
A, B	Working port	SAE J518	1 1/4 in	500	0
	Fastening thread A/B	DIN 13	M14 × 2; 23 deep		
T ₁	Drain port	DIN 3852 ⁵⁾	M18 × 1.5; 12 deep	3	X ⁴⁾
T ₂	Drain port	DIN 3852 ⁵⁾	M18 × 1.5; 12 deep	3	O ⁴⁾

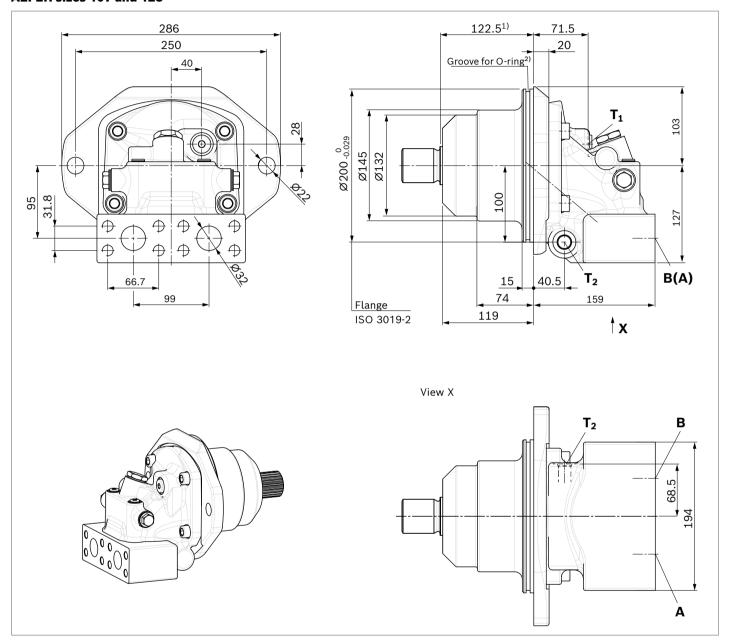
¹⁾ To shaft collar

²⁾ For notes on tightening torques, see the instruction manual.

³⁾ Depending on the application, momentary pressure peaks can occur. Keep this in mind when selecting measuring instruments and fittings.

⁴⁾ Depending on installation position, T_1 or T_2 must be connected (see also installation instructions on page 46).

⁵⁾ The countersink may be deeper than specified in the standard.


⁶⁾ O = Must be connected (condition on delivery: plugged)

X = Plugged (in normal operation)

⁷⁾ O-ring is not included in the scope of delivery.

Dimensions A2FE, SAE working ports at rear (01)

A2FEM sizes 107 and 125 A2FEH sizes 107 and 125

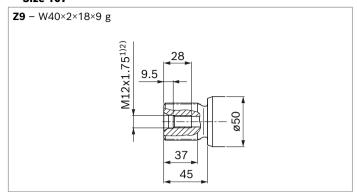
Ports		Standard	Size ²⁾	p_{max} [bar] $^{3)}$	State ⁶⁾
A, B	Working port	SAE J518	1 1/4 in	500	0
	Fastening thread A/B	DIN 13	M14 × 2; 23 deep		
T ₁	Drain port	DIN 3852 ⁵⁾	M18 × 1.5; 12 deep	3	X ⁴⁾
T ₂	Drain port	DIN 3852 ⁵⁾	M18 × 1.5; 12 deep	3	O ⁴⁾

¹⁾ To shaft collar

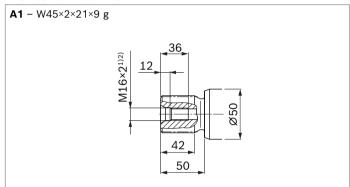
²⁾ For notes on tightening torques, see the instruction manual.

³⁾ Depending on the application, momentary pressure peaks can occur. Keep this in mind when selecting measuring instruments and fittings.

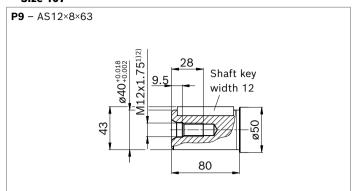
⁴⁾ Depending on installation position, T_1 or T_2 must be connected (see also installation instructions on page 46).

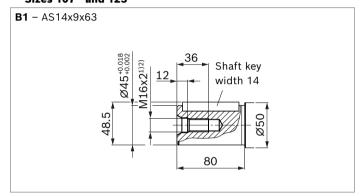

⁵⁾ The countersink may be deeper than specified in the standard.

⁶⁾ O = Must be connected (condition on delivery: plugged)


X = Plugged (in normal operation)

⁷⁾ O-ring is not included in the scope of delivery.


▼ Splined shaft DIN 5480, Size 107³)


▼ Splined shaft DIN 5480, Sizes 107³) and 125

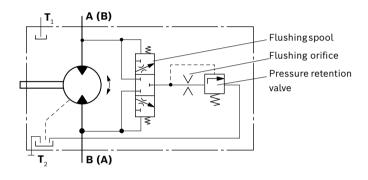
▼ Parallel keyed shaft DIN 6885, Size 107³⁾

▼ Parallel keyed shaft DIN 6885, Sizes 107³⁾ and 125

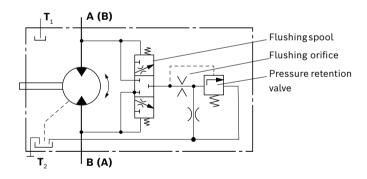
¹⁾ Center bore according to DIN 332 (thread according to DIN 13)

²⁾ For maximum tightening torques, see instruction manual.

³⁾ Not available for A2FMN, A2FEN (pressure range 300 to 350 bar)


Flushing and boost-pressure valve, integrated

The flushing and boost-pressure valve is used to remove heat from the hydraulic circuit.


In a closed circuit, it is used for flushing the case and safeguarding the minimum boost pressure.

Hydraulic fluid is directed from the respective low-pressure side into the motor housing. This is then fed into the reservoir, together with the leakage. In the closed circuit, the removed hydraulic fluid must be replaced by cooled hydraulic fluid supplied by the boost pump.

▼ Circuit diagram, sizes 23 to 90

▼ Circuit diagram, sizes 107 to 125

Flushing flow

Orifices can be used to adjust the flushing flows as required. The following parameters are based on: $\Delta p_{\rm ND} = p_{\rm ND} - p_{\rm G} = 25$ bar and $\nu = 10~{\rm mm}^2/{\rm s}$ ($p_{\rm ND}$ = low pressure, $p_{\rm G}$ = case pressure)

Size	Orifice dia. [mm]	Flushing flow $q_{ m v}$ [l/min]
23, 28, 32, 37, 45, 56,	1.0	2.6
63, 80, 90	1.3	4
	1.5	6
	1.7	7.4
	1.8	8.5
	2.0	10
	2.3	11.4
	3	12.5
107, 125	1.2	4
	1.4	6
	1.6	7.4
	1.8	8.5
	2.0	10
	2.5	15
	2.8	18
	3.1	21
	3.8	27
	4.0	31
	5.0	37

Cracking pressure of pressure retention valve

(observe when setting the primary valve)

➤ Size 23 to 125, fixed setting 16 bar

Switching pressure of flushing spool

Sizes 23 to 107(N)

 $\Delta p = 8 \pm 1 \text{ bar}$

▶ Sizes 107 and 125

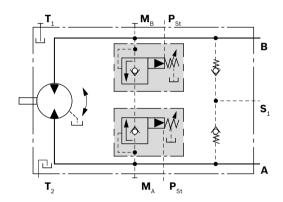
 $\Delta p = 17.5 \pm 1.5 \text{ bar}$

Pressure relief valve

The MHDB pressure relief valves (see data sheets 64602 and 64612) protect the hydraulic motor from overload. As soon as the set cracking pressure is reached, the hydraulic fluid flows from the high-pressure side to the low-pressure side.

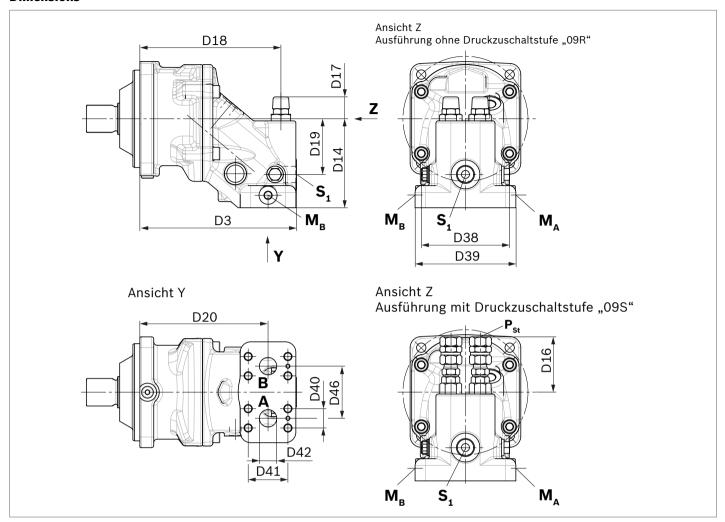

The pressure relief valves are only available in conjunction with the working ports 07 and 09 (for the counterbalance valve for mounting to working ports 07 see next page).

Cracking pressure setting range 50 to 420 bar


For versions "with pressure sequencing stage" 09S, a higher pressure setting can be implemented by connecting an external pilot pressure of 25 up to 30 bar at port P_{St} . When ordering, state in plain text:

- ► Cracking pressure of pressure relief valve
- Cracking pressure with pilot pressure applied to P_{St} (only with version 09S)

▼ Circuit diagram version without pressure boost facility 09R


▼ Circuit diagram version with pressure boost facility 09S

Permissible input flow or pressure for version with pressure-relief valves

	Without valve		Limited values when using pressure relief valves						
Motor			Pressure relief val	Pressure relief valve					
NG	$p_{\text{nom}}/p_{\text{max}}$ [bar]	q _{V max} [l/min]	NG	p_{nom}/p_{max} [bar]	$egin{array}{c} q_{ee} \ egin{array}{c} \egin{array}{c} egin{array}{c} egin{array}{c} egin{array}{c} \egin{array}{c} \e$	Code			
45	400/450	255	22	350/420	240	09R, 09S			
56		280							
63		315							
80		360							
90		405							

Dimensions

Size		D3	D14	D16	D17	D18	D19	D20	D38	D39	D40	D41	D42	D46
45, 56, 63	MHDB 22	206	120	74	32.5	182	75	163	137	130	23.8	50.8	Ø19	75
80, 90	MHDB 22	225.5	128	73	31.5	203	80	184.5	127	145	27.8	57.2	Ø25	75

Size	A, B	S ₁ ¹⁾	M _A , M _B ¹⁾	P _{St} ¹⁾
45, 56, 63	3/4 in	M22 × 1.5; 14 deep	M12 × 1.5; 12 deep	G 1/4
80, 90	1 in	M26 × 1.5; 16 deep	M12 × 1.5; 12 deep	G 1/4

Ports		Standard	Size ¹⁾	p _{max} [bar] ²⁾	State ⁴⁾
A, B	Working port	SAE J518	see table above	420	0
S ₁	Boost port (for working ports 09R/09S only)	DIN 3852 ³⁾	see table above	5	0
M _A , M _B	Measuring port pressure A/B	DIN 3852 ³⁾	see table above	420	X
P _{St}	Pilot pressure port (for working ports 09S only)	DIN ISO 228	see table above	30	0

¹⁾ For notes on tightening torques, see the instruction manual.

²⁾ Depending on the application, momentary pressure peaks can occur. Keep this in mind when selecting measuring instruments and fittings.

³⁾ The countersink may be deeper than specified in the standard.

⁴⁾ O = Must be connected (condition on delivery: plugged)

X = Plugged (in normal operation)

Counterbalance valve BVD

Function

Counterbalance valves for travel drives and winches should reduce the danger of overspeed and cavitation of axial piston motors in open circuits. Cavitation occurs if, during braking, when going downhill or during the load-lowering process, the motor speed is greater than it should be for the given inlet flow and thus the supply pressure falls sharply.

If the supply pressure falls below the level specified for the relevant counterbalance valve, the counterbalance spool moves into the closed position. The cross-sectional area of the counterbalance valve return passage is then reduced, creating a bottleneck in the return flow of the hydraulic fluid. The pressure increases and brakes the motor until the rotational speed of the motor reaches the specified value for the given inlet flow.

Notice

- ▶ BVD available in sizes 45 to 90.
- ► The counterbalance valve must be ordered additionally. We recommend ordering the counterbalance valve and the motor as a set.

Order example:

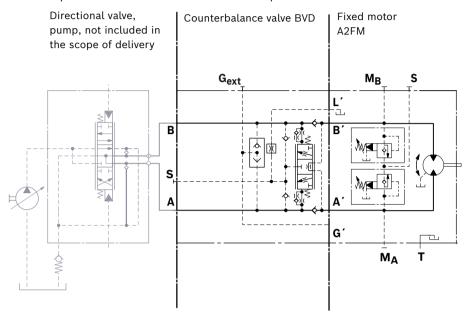
A2FMM90/70NWVN4Z907W000 + BVD20F27S/41B-V03K16D0400S12

- ► The counterbalance valve does not replace the mechanical service brake and holding brake.
- ► Observe the detailed notes on the BVD counterbalance valve contained in RE 95522
- ► For the design of the brake release valve, we must know the following data for the mechanical holding brake:
 - the cracking pressure
 - the volume of the brake spool between minimum stroke (brake closed) and maximum stroke (brake released with 21 bar)
 - the required closing time for a warm device (oil viscosity approx. 15 mm2/s)

Permissible input flow or pressure for version with counterbalance valve

	Without valve	Without valve		Limited values when using counterbalance valves				
Motor				BVD				
NG	p_{nom}/p_{max} [bar]	$q_{ m V \ max}$ [l/min]	NG	$p_{\text{nom}}/p_{\text{max}}$ [bar]	$oxed{q_{ee}^{1)}} [extsf{Umin}]$	Code		
45	400/450	255	20	350/420	220	07W		
56		280						
63		315						
80		360						
90		405						

¹⁾ Restriction of input flow with counterbalance valve

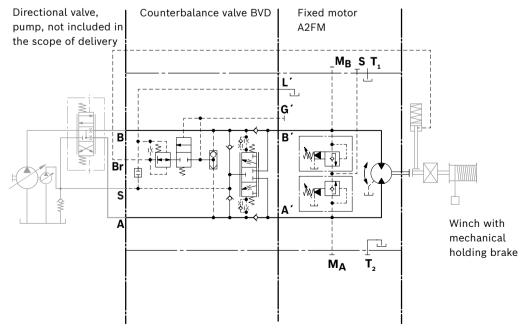

Brake valve BVD...F

Application option

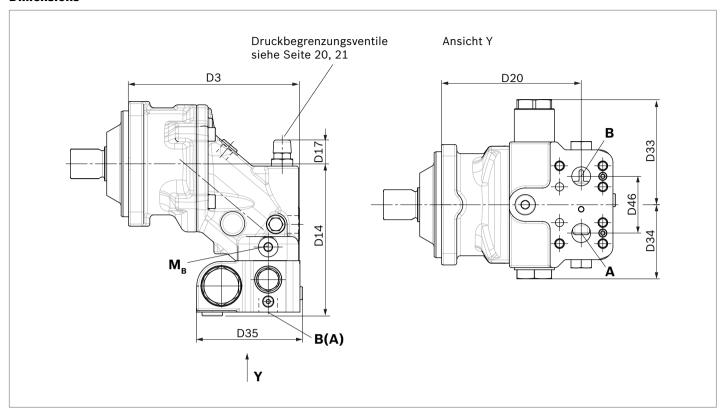
▶ Driveline for wheeled excavators

Example circuit diagram for travel drive in wheeled excavators

A2FMM90/70NWVN4Z907W000 + BVD20F27S/41B-V03K16D0400S12


BVD...W winch counterbalance valve

Application options


- ▶ Winch drives in cranes (BVD)
- ► Track drive in excavator crawlers (BVD)

Example circuit diagram for winch drive in cranes

A2FMM90/70NWVN4Z907W000 + BVD20W27L/41B-V01K00D0600S00

Dimensions

Size		A, B	D3	D14	D17	D20	D33	D34	D35	D46
45, 56, 63	BVD 20 17	3/4 in	205	193	32.5	163	98	139	140.5	75
80, 90	BVD 20 27	1 in	226.5	201	31.5	184.5	98	139	140.5	75

Ports		Version	Standard	Size ¹⁾	p _{max} [bar] ²⁾	State ⁴⁾
A, B	Working port	'	SAE J518	see table above	420	0
S	Boost port	BVD20	DIN 3852 ³⁾	M22 × 1.5; 14 deep	30	Х
Br	Brake release port, reduced high pressure	L	DIN 3852 ³⁾	M12 × 1.5; 12.5 deep	30	0
G _{ext}	Brake release port, high pressure	S	DIN 3852 ³⁾	M12 × 1.5; 12.5 deep	420	X
M _A , M _B	Measuring port pressure A/B		DIN 3852 ³⁾	M12 × 1.5; 12 deep	420	X

Mounting the counterbalance valve

When delivered, the counterbalance valve is fastened to the motor with two tacking screws (transport lock). The tacking screws may not be removed while mounting the working lines. If the counterbalance valve and motor are delivered separately, the counterbalance valve must first be fastened to the

motor port plate using the provided tacking screws.

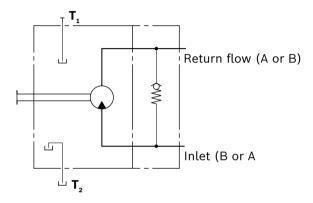
The counterbalance valve is finally mounted to the motor by fitting the SAE flange.

The screws to be used and the instructions for mounting can be found in the instruction manual.

¹⁾ For notes on tightening torques, see the instruction manual.

²⁾ Depending on the application, momentary pressure peaks can occur. Keep this in mind when selecting measuring instruments and fittings.

³⁾ The countersink may be deeper than specified in the standard.


 ⁴⁾ O = Must be connected (condition on delivery: plugged)
 X = Plugged (in normal operation)

Port plate with integrated check valve (U)

Function

The motor with defined rotational direction is supplied via the inlet port (A or B). As soon as the inlet is disabled and the driven component (e.g. fan wheel) is running due to its own flywheel mass, the motor operates as pump. Since the turning motor is no longer supplied by the inlet, it will get the required hydraulic fluid via the check valve from the return line.

▼ Circuit diagram

Flow direction

Rotational direction viewed on drive shaft				
clockwise	counter-clockwise			
A to B	B to A			

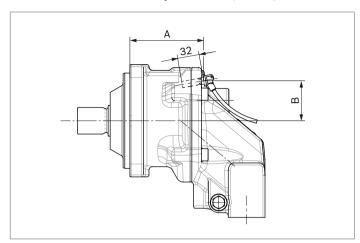
Speed sensors DSA and DSM

The motor speed can be recorded by the fitted DSA/DSM speed sensor. The frequency signal required is generated by splines at the rotary group.

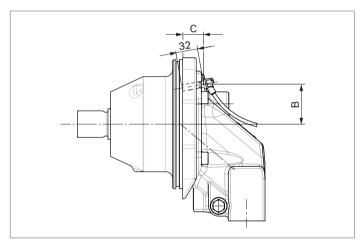
In addition to the speed, the DSA/DMS sensor will record the rotational direction of the motor.

Type code, technical data, dimensions and details on the plug, plus safety instructions about the sensor can be found in the relevant data sheet DSA (95133) or DSM (95132).

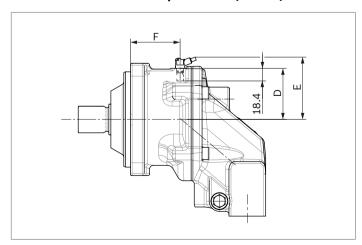
The sensor is mounted on the port provided for this purpose with a mounting bolt. On deliveries without sensor, the port is plugged with a pressure-resistant cover. We recommend ordering the A2F fixed motor complete with mounted sensor.


The following versions are available:

- ▶ with mounted DSA speed sensor: Code B
- with mounted DSM speed sensor: Code M
- prepared for DSA speed sensor (delivery without sensor): Code A
- prepared for DSM speed sensor (delivery without sensor): Code N


Size	A2FM/H	23, 28, 32	45, 56, 63	80, 90	107, 125
	A2FN	28, 32, 37, 45	56, 63, 80	90, 107	-
Number of teeth		38	47	53	59
Dimensions	Α	90.9	96.6	108.4	113.6
	В	44.5	54.6	58.8	62.2
	С	27.1	36.3	30.4	31.1
	D	61	71	75	78.2
	E	79.5	89.5	93.5	96.7
	F	54.9	61.2	72.6	72.6

Dimensions


▼ A2FM with mounted DSA speed sensor (Code B)

▼ A2FE with mounted DSA speed sensor (Code B)

▼ A2FM with mounted DSM speed sensor (Code M)

Installation instructions

General

The axial piston unit must be filled with hydraulic fluid and air bled during commissioning and operation. This must also be observed following a longer standstill as the axial piston unit may empty via the hydraulic lines.

Particularly in the installation position "drive shaft upwards", filling and air bleeding must be carried out completely as there is, for example, a danger of dry running.

The leakage in the housing area must be directed to the reservoir via the highest drain port (T_1, T_2) .

If a shared drain line is used for several units, make sure that the respective case pressure in each unit is not exceeded. The shared drain line must be dimensioned to ensure that the maximum permissible housing pressure of all connected units is not exceeded in any operating conditions, particularly at cold start. If this is not possible, separate drain line must be laid, if necessary.

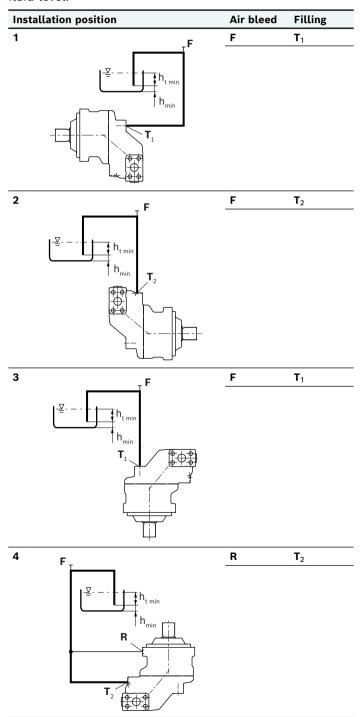
To achieve favorable noise values, decouple all connecting cables using elastic elements and avoid above-reservoir installation.

In all operating conditions, the drain line must flow into the reservoir below the minimum fluid level.

Notice

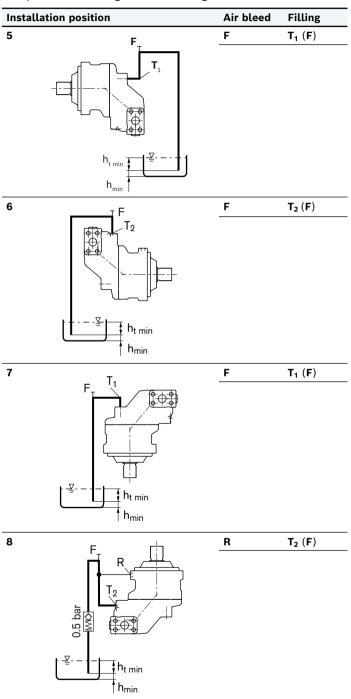
- ► For A2FM with installation position "shaft upwards" an air bleed port **R** is required (specify in plain text when ordering, special version).
- ► For A2FE the "shaft upwards" installation position is not permissible.

Key	
F	Filling / Air bleeding Notice: F is part of the external piping
R	Air bleed port (special version)
T ₁ , T ₂	Drain port
h _{t min}	Minimum required immersion depth (200 mm)
h _{min}	Minimum required distance to reservoir bottom (100 mm)


Installation position

See the following examples 1 to 8.

Further installation positions are available upon request. Recommended installation position: **1** and **2**


Below-reservoir installation (standard)

Below-reservoir installation means that the axial piston unit is installed outside of the reservoir below the minimum fluid level.

Above-reservoir installation

Above-reservoir installation means that the axial piston unit is installed above the minimum fluid level of the reservoir. Recommendation for installation position **8** (drive shaft up): A check valve in the drain line (cracking pressure 0.5 bar) can prevent draining of the housing area.

Notice

Port ${\bf F}$ is part of the external piping and must be provided on the customer side to make filling and air bleeding easier.

Project planning notes

48

- ► The motor A2FM/A2FE is designed to be used in open and closed circuits.
- ► The project planning, assembly and commissioning of the axial piston unit require the involvement of qualified skilled persons.
- ▶ Before using the axial piston unit, please read the corresponding instruction manual completely and thoroughly. If necessary, this can be requested from Bosch Rexroth.
- ► Before finalizing your design, please request a binding installation drawing.
- ► The specified data and notes contained herein must be observed.
- ▶ Preservation: Our axial piston units are supplied as standard with preservative protection for a maximum of 12 months. If longer preservation is required (maximum 24 months), please specify this in plain text when placing your order. The preservation periods apply for optimal storage conditions, which can be found in data sheet 90312 or in the instruction manual.
- ► Be sure to add a pressure relief valve to the hydraulic system.
- ► Please note the details regarding the tightening torques of port threads and other screwed connections in the instruction manual.
- ► Working ports:
 - The ports and fastening threads are designed for the specified maximum pressure. The machine or system manufacturer must ensure the connection elements and lines correspond to the specified application conditions (pressure, flow, hydraulic fluid, temperature) with the necessary safety factors.
 - The working ports and function ports are only intended to accommodate hydraulic lines.

Safety instructions

- ▶ During and shortly after operation, there is a risk of burning on the axial piston unit. Take the appropriate safety measures (e.g. by wearing protective clothing).
- ▶ Moving parts in control equipment (e.g. valve spools) can, under certain circumstances, get stuck in an undefined position due to contamination (e.g. impure hydraulic fluid, abrasion or residual dirt from components). As a result, the hydraulic fluid flow and the build-up of torque in the axial piston unit can no longer respond correctly to the operator's specifications. Even the use of various filter elements (external or internal flow filtration) will not rule out a fault but merely reduce the risk. The machine/system manufacturer must test whether remedial measures are needed on the machine for the application concerned in order to bring the driven consumer into a safe position (e.g. safe stop) and ensure any measures are appropriately implemented.
- ► In certain conditions, moving parts in high pressure relief valves might get stuck in an undefined position due to contamination (e.g. contaminated hydraulic fluid). This can result in restriction or loss of loadholding functions in lifting winches.

 Therefore it is the machine and/or system manufacturer's responsibility to make sure that the load can always be put in a safe mode if needed. Also, he needs to ensure that these measures are properly implemented.

Bosch Rexroth AG

Glockeraustraße 4 89275 Elchingen Germany Tel. +49 7308 82-0 info.ma@boschrexroth.de www.boschrexroth.com © Bosch Rexroth AG 2019. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights. The data specified within only serves to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.